
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 13: “Confuse/Match” Games (II)
Nov. 14, 2005

Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell and Sridhar Srinivasan

1 Reminders from Lecture 12

Our goal is to show the following theorem:

Theorem 1.1.Let s < 1 be a constant. Suppose G is a “confuse/match”-style game withω(G) ≤
s. Then ifk = poly(1/ε), ω(Gk) < ε.

If G is repeated in parallelpoly(1/ε) times, with overwhelming probability (as a function of
ε), there will bepoly(1/ε) many “confuse rounds” andpoly(1/ε) many “match rounds”. These
rounds will be randomly ordered. Further, it only helps the provers if we fix the questions in some
rounds and tell them everything chosen in those rounds. For all of these reasons, it suffices (and
indeed is equivalent) to prove the following theorem:

Theorem 1.2. Let s < 1 be constant. LetC = (1/ε)39, m = (1/ε)11, and writeC ′ = C + m.
Given any 2P1R gameG (with the projection property), letG′ be the game withC ′ parallel rounds,
in whichC confuse rounds ofG andm match rounds ofG are played, in a random order. Then
ω(G′) ≤ ε.

To prove this theorem we will refer to the following two theorems proved in the last class:

Fact 1.3. LetX be a set andγ be a probability distribution onX. Letf : XC′ → {0, 1}, C ≥ 1,
where we think ofXC′ as having product probability distributionγC′. Let

µ = Pr
~q∈γC′

[f(~q) = 1].

Suppose we picki ∈ [C ′] at random and then pickqi ← γ at random. Let

µ̃ = µ̃i,qi
= Pr

i,qi

[f | i, qi].

Then,
Pr
i,qi

[
|µ̃− µ| ≥ 1/

3
√

C ′
]
≤ 1/

3
√

C ′.

Fact 1.4. Let R ⊆ [C] be any nonempty set, andP : QC′ → AC . Supposei and qi are chosen
randomly as in Fact1.3; then

0 ≤ E
i,qi

[PredictabilityR(P | i, qi)]− PredictabilityR(P )] ≤ 1/C ′.

Remark 1.5. Note that the above two facts are lemmas about general functions; i.e., they have
nothing to do with 2P1R games.
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2 Intuition for the proof

Let P : QC′ → AC′ be the strategy of Prover 2. The key component of our overall proof is
codifying the intuition thatP2’s strategy is either “mostly serial” or “highly dependent on many
coordinates”. (Note that this key theorem still has nothing to do with games; it is just a theorem
about the structure of prover strategies.) To prove a rigorous statement along these lines takes some
work. Roughly speaking, our key theorem will say something like the following:

High-level version of the key theorem. Suppose we pick a block of coordinatesR ⊆ [C ′] and
the questions for that block,~qR, randomly. Then either:

• It’s very likely (over the choice ofR, ~qR thatP ’s answers on the coordinates ofR are highly
unpredictable (over the choice of the remaining questions). OR,

• [There’s a decent chance thatP ’s answers onR are decently predictable, BUT. . .] Condi-
tioned on any plausible set of answers in the coordinates ofR, P is forced into a highly serial
strategy on the remaining coordinates[C ′] \R.

Once we rigorize this statement, it is not too hard to use it to show that the provers cannot succeed
in G′ with probability more thanε.

3 Finding a “good block size”

Fix once and for all the strategy of Prover 2,P2 : QC′ → AC′. (We have switched notation,Q
instead ofY .) Our first task is to determine a “good block size”r∗ for the blockR discussed in the
previous section on intuition. This will be a number between1 andm/2. To find r∗, we consider
the following “thought experiment” regardingP2:

We imagine filling in up tom/2 questions inQC′ at random, one by one. I.e., we pick
i1, i2, . . . , im/2 at random from[C ′] (all distinct) and alsoqi1 , qi2 , . . . , qm/2, independently from
γ, P2’s natural distribution on questions (inputs). Given1 ≤ r ≤ m/2, let Rr denote the (ran-
dom) set{i1, . . . , ir}, and write~qRr for the associated questions. We now look at the following
Predictabilities:

(1 ) PredictabilityR1
(P2 | R1, ~qR1)

(1′) PredictabilityR1
(P2 | R2, ~qR2)

(2 ) PredictabilityR2
(P2 | R2, ~qR2)

(2′) PredictabilityR2
(P2 | R3, ~qR3)

(3 ) PredictabilityR3
(P2 | R3, ~qR3)

· · ·
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(m/2) PredictabilityRm/2
(P2 | Rm, ~qRm/2

)

I.e., we see how Predictability ofP2 varies as we do the following two things: a) Give a new
random question in a random coordinate (this makes Predictability go up); b) Require prediction
on this new coordinate (this makes Predictability go down).

Consider now the list ofexpectationsof the above quantities, (1), (1′), etc., where the expecta-
tion is over the choice ofRm/2 and~qRm/2

.

Lemma 3.1. There exists some “special block size”1 ≤ r∗ < m/2 such that in going from the (r∗)
expectation to the (r∗ + 1) expectation, the expected Predictability goes down by at mostO(1)/m.

Proof. The expected value of any of the quantities (r) or (r′) is a number in the range[0, 1], since
Predictabilities are always in this range. In ther → r′ steps, Predictability goes up. However, by
Fact1.4, it goes up by at most1/(C ′ − r) ≤ 1/C. This is very small, and so the total amount the
expected Predictability goes up over allm/2 steps is at most(m/2)(1/C) ¿ 1, using the fact that
C À m. Since all numbers are in the range[0, 1], and the total increase from beginning to end is
at most 1, the total decrease, from ther′ → r + 1 steps, must be at most 2. Thus there must be
at least one step(r∗)′ → r∗ + 1, where the decrease in the Predictabilities’ expectation isat most
2/(m/2) = 4/m. (And, going fromr∗ to r∗ + 1 only makes the decrease less.)

Thus we have identified a “special block size”1 ≤ r∗ < m/2 with the following property:

Corollary 3.2. LetR ⊆ [C ′] be a random set of cardinalityr∗ and let~qR be random questions for
P2 on these coordinates. Further, leti be a random coordinate from[C ′]\R and letqi be a random
question for this coordinate. Then

E[PredictabilityR(P2 | ~qR)]− E[PredictabilityR∪{i}(P2 | ~qR, qi)] ≤ O(1)/m.

Notation. In the remainder of the proof, we will often use the following notation:

• (R, ~qR) will be a “random block”, meaningR is a randomly chosen subset of[C ′] of sizer∗,
and~qR is a random set of questions for those coordinates.

• ~a will denote a string of answers inAR.

• Notation like “Pr[~a | (R, ~qR)]” will mean “the probability, over the choice of questions to
P2 outside ofR, thatP2 will output the string of answers~a in the positionsR, giventhat it
gets the questions~qR in the coordinatesR”.

• In particular, we will also use the notationPr[~a | (R, ~qR), (i, qi)] andPr[~a, a | (R, ~qR), (i, qi)],
where(i, qi) is a coordinate and a question outsideR, anda is a single answer associated
with the coordinatei.
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4 The key theorem

In this section we use Corollary3.2to prove the key theorem, giving a dichotomy of the possibili-
ties forP2’s strategy.

Definition 4.1. Given (R, ~qR), we say answer string~a ∈ AR is deadif Pr[~a | (R, ~qR)] ≤ ε.
Otherwise it isalive. We further say that the whole block(R, ~qR) is deadif all answer strings
~a ∈ AR are dead for it.

Recall thatε is our target value for the repeated game. Define alsoη = ε3. We now make the
following slightly tricky definition:

Definition 4.2. We say that the block(R, ~qR) “ (1− η) induces serial strategies” if

• (R, ~qR) is alive.

• For every associated live answer~a ∈ AR, there is aserial strategy

S~a : ([C ′] \R)×Q → A

such that with probability≥ 1− η over the choice of an additional random question(i, qi),
it holds that

Pr[~a, S~a(i, qi) | (R, ~qR), (i, qi)] ≥ (1− η)Pr[~a | (R, ~qR), (i, qi)].

In other words, for almost all additional questions, the answerP2 gives in the associated
coordinate is essentially forced.

The idea for the key theorem is this. From Corollary3.2 we know that for a typicalr∗-block
(R, ~qR), there is almost no loss in Predictability between predicting onR and predicting onR plus
one more random coordinate. By the definition of Predictability, this can only happen in one of two
ways: First, either Predictability was negligible to begin with (i.e., almost all answer strings are
dead); or, Predictability was non-negligible,but, every answer string onR forces a mostly serial
way of answering most other questions.

Theorem 4.3(Key Theorem). Given the strategyP2, one of the following two cases holds:

• (Case 1) When(R, ~qR) is a randomr∗-block, with probability at least1− ε, (R, ~qR) is dead.

• (Case 2) [At least anε fraction of(R, ~qR) are alive, but. . . ] If(R, ~qR) is a randomlive block,
then with probability at least1− ε, (R, ~qr) (1− η)-induces serial strategies.

Proof. The proof essentially just involves unpacking the definitions involved in Corollary3.2and
the phrase “(1−η)”-induces serial strategies. The proof is by contradiction. Assuming that neither
Case 1 or Case 2 holds, we get that if you pick the block(R, ~qR) at random, with probability at least
ε2 it is alive andfails to (1 − η)-induce serial strategies. This means that there is some particular
live answer string~a such that, conditioned onP2 answering~a, at least anη fraction of future
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(i, qi) pairs are not “(1 − η)-determined”. This is enough to show that in fact there is a slightly
substantial loss in expected Predictability in predicting onr∗-sized blocks versus(r∗ + 1)-sized
blocks, contradicting Corollary3.2.

To do the details, we need to overcome a slight technicality: Answer strings that are alive (i.e.,
have probability at leastε) for (R, ~qR) might become significantly less probable once the extra
question(i, qi) is picked. However, by Fact1.3, this is extremely unlikely. Leaving this detail for
later, what we have is the following:

Proposition 4.4. Assuming the statement of the theorem does not hold, let(R, ~qR) be a random
r∗-block and let(i, qi) be an additional random question. Then with probability at leastηε2/2,
there exists some answer string~a ∈ AR such that:

1. For all a ∈ A, Pr[~a, a | (R, ~qR), (i, qi)] ≤ (1− η)Pr[~a, a | (R, ~qR)].

2. Pr[~a | (R, ~qR), (i, qi)] ≥ ε/2.

We show that this proposition leads to a loss ofη2ε4/8 in expected Predictability. From Point 1
above it is easy to conclude that

∑
a∈A

Pr[~a, a | (R, ~qR), (i, qi)]
2 ≤ (1− 2η + 2η2)Pr[~a | (R, ~qR), (i, qi)]

because, subject to Point 1, the left-hand side is maximized if there is one answer contributing a
(1 − η)-fraction of the probability, another contributing anη-fraction, and the rest contributing 0.
Using2η − 2η2 ≥ η andPr[~a | (R, ~qR), (i, qi)] ≥ ε/2, we get

Pr[~a | (R, ~qR), (i, qi)]
2 −

∑
a∈A

Pr[~a, a | (R, ~qR), (i, qi)]
2 ≥ η(ε/2)2.

From the definition of Predictability, we conclude that whenever the events of the Proposition
occur, at leastη(ε/2)2 is contributed to

E[PredictabilityR(P2 | ~qR)]− E[PredictabilityR∪{i}(P2 | ~qR, qi)].

Thus the total loss is at least(ηε2/2) · η(ε/2)2 = ε10/8 ¿ O(1)/m, contradicting Corollary3.2.

To complete the proof we now only need to use Fact1.3to overcome the technicality mentioned
earlier. Fix any(R, ~qR) and any live answer string~a ∈ AR, so Pr[~a | (R, ~qR)] ≥ ε. Since
1/ 3
√

C ¿ ε/2, Fact1.3 tells us thatPr[~a | (R, ~qR), (i, qi)] ≥ ε/2 except with probability at most
1/ 3
√

C over the choice of(i, qi). (We are usingC ≤ C ′ − r∗ here.) Union-bounding over all
live ~a (of which there at most1/ε) we get that for a random choice of(R, ~qR) and(i, qi), except
with probability1/ε 3

√
(C) = (1/ε)12 every answer string~a that is alive for(R, ~qR) still satisfies

Pr[~a | (R, ~qR), (i, qi)] ≥ ε/2. Since1/ε12 ¿ ηε2/2, we are done.
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5 Bounding the success probability of the provers

We now turn to dealing with 2P1R games; specifically, Theorem1.2. Fix now also Prover 1’s
strategy,P1 : XC′ → AC′.

In the theorem the way questions are picked is that a randomm ourC ′ coordinates are “match
rounds” and the rest are “confuse rounds”. We will equivalently imagine the rounds types and
questions to be picked as follows:

Step 1: PickR ⊆ [C ′] of sizer∗ at random. These will be match rounds. Pick also both provers’
questions for these rounds.

Step 2: Pick m − r∗ more random coordinates to be match rounds, and also pick the provers’
questions for these rounds. (Note there are at leastm/2 such rounds, asr∗ ≤ m/2.)

Step 3: All other coordinates are “confuse rounds”; pick the provers’ questions for these rounds
randomly. Note that the two provers getindependentquestions in these rounds, since they are
confuse rounds.

The proof that the provers succeed with probability at mostε (actually, we will just proveO(ε))
now divides into two cases, the case from the Key Theorem4.3.

Case 1: In this case, after Step 1 is complete, the question block(R, ~qR) for P2 is dead with
probability at least1 − ε. We give up theε here to the provers’ success probability. So assuming
it’s dead, no answer string~a ∈ AR has more thanε probability of ultimately being given byP2,
over the choice of its remaining questions.

We would like to argue that this is still true after Step 2, whenP2 has gotten its remaining
match round questions. This follows pretty easily from Fact1.3. We can’t quite union bound
over all answer strings (there may be too many), but we can do the following: Group all possible
strings inAR into “clusters”, where the clusters have total probability betweenε/2 andε. There
are at most2/ε such clusters. By Fact1.3, for each additional random match round question, the
probability a cluster gets more than1/ 3

√
C more probable is at most1/ 3

√
C. Union-bounding over

all remaining match round questions (at mostm) and all clusters, we get that even after Step 2,
except with probability at mostm · (2/ε) · (1/ 3

√
C = 2ε, all clusters — and therefore all answer

strings inAR — have probability at mostε + m/ 3
√

C ≤ 2ε.
Again, we give up the2ε chance of answer strings becoming significantly more likely to the

provers’ success probability. So assuming this doesn’t happen, we are through Steps 1 and 2 and
we know that for every answer string~a ∈ AR in P2’s R coordinates, the probabilityP2 will answer
with that string — over the choice of its remaining confuse round questions — is at most2ε. But
now in Step 3, the provers’ questions are chosen independently. So first imagine filling Prover 1’s
questions. Then this prover has all of its questions, and so its complete answer string is decided. In
particular, its answer string on the coordinatesR — call it~b — is decided. Since these coordinates
are match coordinates, and sinceG has the projection property, this means that there is a unique
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string~a that Prover 2 must answer on theseR coordinates (π(~b)) in order for the provers to win. But
we have already argued the probabilityP2 will answer this string, over the choice of its remaining
confuse round questions, is at most2ε.

We have therefore shown that the overall success probability of the provers in Case 1 is at most
ε + 2ε + 2ε = O(ε).

Case 2: In this case, let us first do Step 1, producing(R, ~qR) (as well as Prover 1’s questions on
R). If (R, ~qR) is dead then the analysis from Case 1 shows that the provers succeed with probability
at most4ε. Giving up this probability, we can condition on(R, ~qR) being alive. Since we are in
Case 2 of Theorem4.3, we have that except with probability1− ε, (R, ~qR) (1− η)-induces serial
strategies. We assume this is the case, giving up the remainingε probability.

We now proceed to analyze the provers’ success probability as follows:

Pr[success] =
∑

~a∈AR

Pr[success ANDP2 eventually answers~a onR].

We break up the sum above into the cases when~a is alive and when it is dead. For the dead~a’s,
we can again use the analysis from Case 1 to show that in total they contribute at most4ε to the
overall sum. Giving up this4ε probability, we proceed to analyze the contribution from live~a’s,
each of which we know(1 − η)-induces a serial strategyS~a. We will show that for each live~a
the probability the provers succeed AND thatP2 eventually answers~a is at mostO(ε2). Thus we
conclude that the overall success probability is at most4ε + ε + 4ε + (1/ε) · O(ε2) ≤ O(ε), using
the fact that there are at most(1/ε) live answers. This will complete the proof.

So let us fix a live answer~a and its associated serial strategyS := S~a. By definition of inducing
serial strategies, we know that conditioning onP2 answering with~a, the probability that it answers
a random additional question(i, qi) in accordance withS is at least1 − 2η. Hence the expected
fraction of coordinates answered in accordance withS is at least1− 2η. Indeed, this is true just of
the coordinates in the remaining match rounds. Using Markov’s inequality, we conclude:

Fact 5.1. Conditioned onP2 ultimately answering~a in the coordinatesR, except with probability
ε2, P2 will answer at least a1 − 2η/ε2 = 1 − 2ε fraction of the coordinates in the Step 2 rounds
according to the serial strategyS.

Thus

Pr[success ANDP2 eventually answers~a] ≤ ε2+

Pr[success ANDP2 eventually answers~a

AND P2 answers≥ 1− 2ε fraction of remaining match coordinates according toS].

But as soon as we knowP2 plays a large fraction of coordinates according to a serial strategy, we
can upper-bound its success probability. Since succeeding on all coordinates while using a serial
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strategy on many coordinates is even harder than succeeding on many coordinates while using a
serial strategy on all coordinates, we have the probability on the right, above, is at most

Pr[P2 matches on≥ 1− 2ε fraction of the Step 2 match coordinates

| P2 answers all Step 2 coordinates according toS]. (1)

ButS is a serial strategy, and even with all questions in the Step 1 match rounds fixed,P2 can match
in any given Step 2 match round with probability at mosts < 1. Thus it is expected to match in at
most ans fraction of these coordinates — of which there are at leastm/2. By a Chernoff bound,
we easily get that (1) at mostexp(−Ω(ε(m/2))) ¿ O(ε2). This completes the proof.
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