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1 Reminders from Lecture 12

Our goal is to show the following theorem:

Theorem 1.1.Lets < 1 be a constant. Suppose G is a “confuse/match”-style gamewjith <
s. Then ifk = poly(1/¢), w(G*) < e.

If G is repeated in parallgloly(1/¢) times, with overwhelming probability (as a function of
€), there will bepoly(1/¢) many “confuse rounds” anpoly(1/¢) many “match rounds”. These
rounds will be randomly ordered. Further, it only helps the provers if we fix the questions in some
rounds and tell them everything chosen in those rounds. For all of these reasons, it suffices (and
indeed is equivalent) to prove the following theorem:

Theorem 1.2.Lets < 1 be constant. Le€ = (1/¢)%, m = (1/¢)!, and writeC’ = C + m.
Given any 2P1R gam@ (with the projection property), le&’ be the game with” parallel rounds,
in which C' confuse rounds off andm match rounds o7 are played, in a random order. Then
w(G") <e.

To prove this theorem we will refer to the following two theorems proved in the last class:

Fact 1.3. Let X be a set and, be a probability distribution onX. Let f : X¢" — {0,1}, C > 1,
where we think oX ¢’ as having product probability distribution®’. Let

= Pr[f(@)=1]
qey
Suppose we picke [C'] at random and then picl < ~ at random. Let
[= g = qu[f |4, i)

Then,

Pr||i—p| > 1/5’/5] <1/3C".
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Fact 1.4. Let R C [C] be any nonempty set, arddl: Q¢ — A®. Suppose and¢; are chosen
randomly as in Faci.3; then

0 < E [Predictability z(P | 4, ¢;)] — Predictability 5(P)] < 1/C".

ivqi
Remark 1.5. Note that the above two facts are lemmas about general functions; i.e., they have
nothing to do with 2P1R games.



2 Intuition for the proof

Let P : QY — AY be the strategy of Prover 2. The key component of our overall proof is
codifying the intuition that?’s strategy is either “mostly serial” or “highly dependent on many
coordinates”. (Note that this key theorem still has nothing to do with games; it is just a theorem
about the structure of prover strategies.) To prove a rigorous statement along these lines takes some
work. Roughly speakingur key theorem will say something like the following:

High-level version of the key theorem. Suppose we pick a block of coordinatBsC [C’] and
the questions for that blocky, randomly. Then either:

e It's very likely (over the choice oR:, g that P’'s answers on the coordinates®fare highly
unpredictable (over the choice of the remaining questions). OR,

e [There’s a decent chance thats answers onk are decently predictable, BUT].Condi-
tioned on any plausible set of answers in the coordinatéy éfis forced into a highly serial
strategy on the remaining coordinafég] \ R.

Once we rigorize this statement, it is not too hard to use it to show that the provers cannot succeed
in G’ with probability more thar.

3 Finding a “good block size”

Fix once and for all the strategy of ProverR?, : Q¢ — A®’. (We have switched notatioi
instead ofY".) Our first task is to determine a “good block sizéfor the blockR discussed in the
previous section on intuition. This will be a number betwéeamdm /2. To find r*, we consider
the following “thought experiment” regarding.:

We imagine filling in up tom/2 questions inQ“" at random, one by one. l.e., we pick
i1, 12, ..., i/ at random from/C’] (all distinct) and alsay;,, g, - - . , ¢m/2, iNdependently from
v, P»’s natural distribution on questions (inputs). Giver< r < m/2, let R, denote the (ran-
dom) set{iy, ..., }, and writegg, for the associated questions. We now look at the following
Predictabilities:

1) Predictability p, (P | R1, qRr,)
(1) Predictability z (P, | Ra, qr,)
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(2) Predictability 5 (P | R, qr,)

(2) Predictabilityp (P> | Rs, qr,)
(

(3) Predictability p, (P | Rs, ¢r,)



(M/2) Predictabilityp (P2 | Rin, qr,,)

l.e., we see how Predictability a?, varies as we do the following two things: a) Give a new
random question in a random coordinate (this makes Predictability go up); b) Require prediction
on this new coordinate (this makes Predictability go down).

Consider now the list oéxpectation®f the above quantities, (1)1'§, etc., where the expecta-
tion is over the choice of,,, andchm/2.

Lemma 3.1. There exists some “special block size’< r* < m/2 such that in going from the-{)
expectation to ther( + 1) expectation, the expected Predictability goes down by at moist/m.

Proof. The expected value of any of the quantitiesdr (') is a number in the range, 1], since
Predictabilities are always in this range. In the» ' steps, Predictability goes up. However, by
Factl.4, it goes up by at most/(C" — r) < 1/C. This is very small, and so the total amount the
expected Predictability goes up over@il)2 steps is at mostn/2)(1/C) < 1, using the fact that

C > m. Since all numbers are in the ran@e1], and the total increase from beginning to end is
at most 1, the total decrease, from the— r 4 1 steps, must be at most 2. Thus there must be
at least one step*)’ — r* 4 1, where the decrease in the Predictabilities’ expectatian msost
2/(m/2) = 4/m. (And, going fromr* to r* 4+ 1 only makes the decrease less.) O

Thus we have identified a “special block sizeX r* < m/2 with the following property:

Corollary 3.2. Let R C [C’] be a random set of cardinality* and letgr be random questions for
P, on these coordinates. Further, lebe a random coordinate frofd’] \ R and letg; be a random
guestion for this coordinate. Then

E[Predictability p(P | ¢r)] — E[Predictability g (P2 | ¢k, ¢:)] < O(1)/m.

Notation. Inthe remainder of the proof, we will often use the following notation:

e (R, qr) will be a “random block”, meaning? is a randomly chosen subset[6f] of sizer*,
andqy is a random set of questions for those coordinates.

¢ @ will denote a string of answers iA’.

o Notation like “Pr[d | (R, ¢r)]” will mean “the probability, over the choice of questions to
P, outside ofR, that P, will output the string of answers in the positionsk, giventhat it
gets the questiong; in the coordinate$”.

¢ In particular, we will also use the notati®r|@ | (R, ¢r), (i, ¢;)] andPr[d, a | (R, qr), (i, )],
where(i, ¢;) is a coordinate and a question outsileanda is a single answer associated
with the coordinate.



4 The key theorem

In this section we use CorollaB.2 to prove the key theorem, giving a dichotomy of the possibili-
ties for P,’s strategy.

Definition 4.1. Given (R, ¢r), we say answer string € Af is deadif Pr[@ | (R,qr)] < e
Otherwise it isalive. We further say that the whole blo¢k, ¢r) is deadif all answer strings
a € A are dead for it.

Recall thate is our target value for the repeated game. Define alsoe®. We now make the
following slightly tricky definition:

Definition 4.2. We say that the block?, ¢z) “ (1 — 1) induces serial strategies” if
o (R,qg) is alive.
e For every associated live answ@érc A%, there is aserial strategy
Sa: ([CI\R)xQ— A

such that with probability> 1 — n over the choice of an additional random quest{ony;),
it holds that

PI‘[@, S&'(i’ C]i) ’ (R> CTR)? (i? Q1)] > (1 - U)Pr{a ‘ <R7 53)7 (iv ql)]

In other words, for almost all additional questions, the answeigives in the associated
coordinate is essentially forced.

The idea for the key theorem is this. From Coroll&¥# we know that for a typicat*-block
(R, qr), there is almost no loss in Predictability between predictindz@nd predicting or plus
one more random coordinate. By the definition of Predictability, this can only happen in one of two
ways: First, either Predictability was negligible to begin with (i.e., almost all answer strings are
dead); or, Predictability was non-negligiblayt, every answer string oR forces a mostly serial
way of answering most other questions.

Theorem 4.3(Key Theorem) Given the strategy?, one of the following two cases holds:
e (Case 1) WheKiR, ¢r) is a randomr*-block, with probability at least — ¢, (R, ¢r) is dead.

o (Case 2) [Atleast am fraction of (R, ¢) are alive, but...] If(R, ¢r) is a randomlive block,
then with probability at least — ¢, (R, ¢.) (1 — n)-induces serial strategies.

Proof. The proof essentially just involves unpacking the definitions involved in CorcB&gnd

the phrase (1 —n)"-induces serial strategies. The proof is by contradiction. Assuming that neither
Case 1 or Case 2 holds, we get that if you pick the bldekjz) at random, with probability at least

€% it is alive andfails to (1 — n)-induce serial strategies. This means that there is some particular
live answer stringz such that, conditioned o#, answeringad, at least am fraction of future
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(1,q;) pairs are not (1 — n)-determined”. This is enough to show that in fact there is a slightly
substantial loss in expected Predictability in predicting-tisized blocks versug* + 1)-sized
blocks, contradicting Corollar8.Z.

To do the details, we need to overcome a slight technicality: Answer strings that are alive (i.e.,
have probability at least) for (R, ¢zr) might become significantly less probable once the extra
question(z, ¢;) is picked. However, by Fadt.3 this is extremely unlikely. Leaving this detail for
later, what we have is the following:

Proposition 4.4. Assuming the statement of the theorem does not holdRlet;) be a random
r*-block and let(i, ¢;) be an additional random question. Then with probability at le@st/2,
there exists some answer striige A® such that:

1. Foralla € A, Prld,a | (R,qr), (i,¢;)] < (1 —n)Pr[d,a | (R, qr)]-
2. Pr(d| (R.qr), (i,4:)] > €/2.

We show that this proposition leads to a losg&f' /8 in expected Predictability. From Point 1
above it is easy to conclude that

> Prida| (R Gr), (i,0)] < (1 =20+ 20")Pr(d | (R, @), (i, ¢:)]

a€A

because, subject to Point 1, the left-hand side is maximized if there is one answer contributing a
(1 — n)-fraction of the probability, another contributing asfraction, and the rest contributing 0.
Using2n — 2n* > nandPr(a | (R, qr), (i,q)] > €/2, we get

PI‘[& | (Rv CTR)v (i> qi)]Q - Z PI‘[CT, a | (R’ 53)7 (iv %’)]2 > 77(6/2)2'

a€A

From the definition of Predictability, we conclude that whenever the events of the Proposition
occur, at least(¢/2)? is contributed to

E[Predictability o (P | ¢r)] — E[Predictability z ;1 (P2 | qr, ¢:)]-
Thus the total loss is at lea@je?/2) - n(e/2)* = €'0/8 < O(1)/m, contradicting Corollarig.Z.

To complete the proof we now only need to use Ha&to overcome the technicality mentioned
earlier. Fix any(R,qr) and any live answer string € Af, soPr[d | (R,qr)] > €. Since
1/v/C < €/2, Factl.2tells us thatPr[d | (R, qr), (1,q)] > €/2 except with probability at most
1/+/C over the choice ofi,q;). (We are usingC’ < C’ — r* here.) Union-bounding over all
live @ (of which there at most/¢) we get that for a random choice OR, ¢z) and (i, ¢;), except
with probability 1/e{/(C) = (1/¢)'? every answer string that is alive for(R, ¢) still satisfies
Pr(d@| (R, qr), (i,q)] > €/2. Sincel/e'? < ne*/2, we are done. O



5 Bounding the success probability of the provers

We now turn to dealing with 2P1R games; specifically, Theofiegn Fix now also Prover 1's
strategy,”; : X¢ — AY.

In the theorem the way questions are picked is that a randayar C’ coordinates are “match
rounds” and the rest are “confuse rounds”. We will equivalently imagine the rounds types and
guestions to be picked as follows:

Step 1: Pick R C [C"] of sizer* at random. These will be match rounds. Pick also both provers’
guestions for these rounds.

Step 2: Pickm — r* more random coordinates to be match rounds, and also pick the provers’
questions for these rounds. (Note there are at l@gd&tsuch rounds, as* < m/2.)

Step 3. All other coordinates are “confuse rounds”; pick the provers’ questions for these rounds
randomly. Note that the two provers gatlependenguestions in these rounds, since they are
confuse rounds.

The proof that the provers succeed with probability at nagattually, we will just proveO)(e))
now divides into two cases, the case from the Key Theate&in

Case 1: In this case, after Step 1 is complete, the question bldtlkr) for P, is dead with
probability at leastt — e. We give up the: here to the provers’ success probability. So assuming
it's dead, no answer string € A” has more tham probability of ultimately being given by,
over the choice of its remaining questions.

We would like to argue that this is still true after Step 2, wh@nhas gotten its remaining
match round questions. This follows pretty easily from FR& We can’t quite union bound
over all answer strings (there may be too many), but we can do the following: Group all possible
strings in A% into “clusters”, where the clusters have total probability betwe@nande. There
are at mos®/¢e such clusters. By Fadt.3, for each additional random match round question, the
probability a cluster gets more thany/C' more probable is at mosy+/C. Union-bounding over
all remaining match round questions (at mostand all clusters, we get that even after Step 2,
except with probability at most, - (2/€) - (1/3/C = 2¢, all clusters — and therefore all answer
strings inA" — have probability at most+ m/v/C < 2e.

Again, we give up thee chance of answer strings becoming significantly more likely to the
provers’ success probability. So assuming this doesn’t happen, we are through Steps 1 and 2 and
we know that for every answer strisge A" in P,’s R coordinates, the probabilit, will answer
with that string — over the choice of its remaining confuse round questions — is amd3tt
now in Step 3, the provers’ questions are chosen independently. So first imagine filling Prover 1's
guestions. Then this prover has all of its questions, and so its complete answer string is decided. In
particular, its answer string on the coordinates— call it b — is decided. Since these coordinates
are match coordinates, and sinGehas the projection property, this means that there is a unique
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stringa that Prover 2 must answer on theggeoordinates# (b)) in order for the provers to win. But
we have already argued the probabilitywill answer this string, over the choice of its remaining
confuse round questions, is at mast

We have therefore shown that the overall success probability of the provers in Case 1 is at most
€+ 2¢e + 2¢ = O(e).

Case 2: In this case, let us first do Step 1, produciif®) ¢r) (as well as Prover 1's questions on
R). If (R, ¢r) is dead then the analysis from Case 1 shows that the provers succeed with probability
at mostde. Giving up this probability, we can condition di®, ¢z) being alive. Since we are in
Case 2 of Theorem.3, we have that except with probability— ¢, (R, ¢r) (1 — n)-induces serial
strategies. We assume this is the case, giving up the remaipirapability.

We now proceed to analyze the provers’ success probability as follows:

Pr[success= Z Pr[success ANDP, eventually answerg on R|.
acAR

We break up the sum above into the cases whenalive and when it is dead. For the deds,
we can again use the analysis from Case 1 to show that in total they contribute atertm#te
overall sum. Giving up thide probability, we proceed to analyze the contribution from k&
each of which we know1 — n)-induces a serial strategy;. We will show that for each livel
the probability the provers succeed AND thateventually answerg is at mostO(e?). Thus we
conclude that the overall success probability is at Mest € + 4¢ + (1/¢) - O(e?) < O(e), using
the fact that there are at mgst/¢) live answers. This will complete the proof.

So let us fix a live answet and its associated serial strategy= Sz. By definition of inducing
serial strategies, we know that conditioning Bnanswering withz, the probability that it answers
a random additional questidn, ¢;) in accordance witltt is at leastl — 2r. Hence the expected
fraction of coordinates answered in accordance Witk at leastl — 2. Indeed, this is true just of
the coordinates in the remaining match rounds. Using Markov’s inequality, we conclude:

Fact 5.1. Conditioned onP, ultimately answering in the coordinates?, except with probability
€2, P, will answer at least a — 2n/¢> = 1 — 2¢ fraction of the coordinates in the Step 2 rounds
according to the serial strategy.

Thus
Pr[success ANDP, eventually answerg] < >+

Pr[success ANDP; eventually answerg
AND P, answers> 1 — 2¢ fraction of remaining match coordinates accordingto

But as soon as we know, plays a large fraction of coordinates according to a serial strategy, we
can upper-bound its success probability. Since succeeding on all coordinates while using a serial



strategy on many coordinates is even harder than succeeding on many coordinates while using a
serial strategy on all coordinates, we have the probability on the right, above, is at most

Pr[P, matches o> 1 — 2¢ fraction of the Step 2 match coordinates
| P, answers all Step 2 coordinates according'to (1)

But S'is a serial strategy, and even with all questions in the Step 1 match roundsiiaa match
in any given Step 2 match round with probability at mest 1. Thus it is expected to match in at
most ans fraction of these coordinates — of which there are at lea&t. By a Chernoff bound,
we easily get thafl) at mostexp(—(e(m/2))) < O(€?). This completes the proof.



