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Lecture 14: Label Cover Hardness: Application to Set Cover

Lecturer: Venkat Guruswami Scribe: Prasad Raghavendra

In the previous lecture, we have seen the complete proof ofNP hardness of GapLabelCover Prob-
lem. From this point onwards, we shall use the results derived so far to obtain hardness of approxi-
mation results for some important problems. Towards this, we start with the problem of Set-Cover
in this lecture. However, since the hardness of GapLabelCover will be used in showing so many
inapproximability results, we take a closer look at the various parameters of the problem.

1 Label Cover Problem

Definition 1.1. Label Cover Instance:
A label cover instance consists of(G = (V1, V2, E), Σ, Π) where

• G is a bipartite graph between vertex setsV1 andV2 and an edge setE.

• G is left and right regular. Denote byD1 and D2 the degrees of vertices inV1 and V2

respectively.

• Each vertex inV1 ∪ V2 is to be assigned a label from the alphabetΣ.

• For each edgee, there is a constraintΠe which is a function fromΣ on to itself. Thus the set
of all constraints inG are

Π = {Πe : Σ → Σ|e ∈ E}

The property that each constraint is a function fromΣ on to itself, is also referred to as the
Projection Property.

A labelling of the graph, is a mappingσ : V → Σ which assigns a label for each vertex ofG. A
labellingσ is said to satisfy an edgee = (u, v) if and only if

Πe(σ(u)) = σ(v)

Let us define the following ’Promise’ of the Label-Cover Problem.

Definition 1.2. GapLabelCover1,ε(Σ) Given an instanceG of Label Cover such that either one of
the following is true

• There exists a labellingσ such that it satisfies all the edgese in G.

• For any labellingσ of the vertices, not more thanε|E| edges are satisfied byσ.
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The computational problem is to determine which of the above two cases hold forG.

We call the above problem, aPromiseproblem because the input is promised to fall in to either
one of the two categories. Observe that, we do not care about the output if the input does not fall
in to either of the two categories. It is easy to check that, that ifGapLabelCover1,ε(Σ) is NP-hard
then approximatingGapLabelCover1,ε(Σ) within a factor ofε is NP-hard.

In the previous class, we have shown the following theorem.

Theorem 1.3.For all ε > 0 there exists a constant|Σ| such thatGapLabelCover1,ε(Σ) isNP-hard.

The above theorem essentially implies that: Given aE3SAT formula, there is a polynomial
time reduction that outputs a graphG such that

• If the E3SAT is satisfiable then there is a labelling that satisfies all edges inG.

• If the E3SAT is not satisfiable, then no labelling ofG satisfies more thanε fraction of edges
in G.

Observe that our reduction implies something stronger than what is stated in 1.3. For instance,
in the graphG produced by the reduction, the degree of a node is independent ofn. Therefore let
us have a closer look at the various parameters of the graphG produced.

Remember that the in-order to obtain the above reduction, we first reducedE3SAT toGapLabelCover1,c

for some constantc. This reduction, was a polynomial time reduction, with the left and the right
degrees fixed constants independent of the size of theE3SAT instance. We then reduced the sound-
nessc to ε by using some sort of parralel repetition. The size of the graph produced, and the time
taken in this step depends on the value of theε. Therefore, our choice of the Parralel Repetition
theorem, dictates the size of the graph produced and the time taken to produce it. In the table
below, we summarize the values of the various parameters, for two different parralel Repetition
theorems.

Result Alphabet
Size|Σ|

Left Degree
D1

Right
DegreeD2

Number of
vertices

Reduction
Time

Feige/Kilian[1] (2
1
ε )O(1) (2

1
ε )O(1) (2

1
ε )O(1) (n

1
ε )O(1) (n

1
ε )O(1)

Raz[3] (1
ε
)O(1) (1

ε
)O(1) (1

ε
)O(1) nO(log 1

ε
) nO(log 1

ε
)

It is apparent from the table that, for a givenε, the size of the graphs produced by using
Raz’s parralel repetition theorem are much smaller. This means that, the gaps that can be pro-
duced by Raz’s theorem in a fixed polynomial time are much higher, and larger gaps usually
translate to better inapproximability results. For the purposes of this lecture, we will be using the
GapLabelCover1,ε(Σ) instance obtained using Raz’s parralel repetition theorem.

However there is one technical point that needs clarification. Observe that the reduction from
E3SAT to LabelCover used in the proof of theorem1.3, does not produce a graph that is right
regular. In fact, the degree of a vertex corresponding to a variable, is equal to the number of
different clauses in which the variable appears. Fortunately, there is a very easy way to obtain,
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a graph that is right-regular. Instead of creating, aGapLabelCover1,c instance starting from a
GapE3SAT instance, we start withGapE3SAT(5) instance. AGapE3SAT(5) is nothing but the
GapE3SAT instance with the additional constraint that each variable occurs in exactly 5 clauses.
Therefore, the right degree of the graphG if there arek-parralel repetitions, is given by5k.

Note that the number of times we perform parralel repetition, can be function ofn, and still the
above results continue to hold. So choosingε = 1

log3 n
, we get a reduction fromE3SAT instances

of sizen to GapLabelCover1,ε(Σ) instances of sizeO(nO(log log n). Hence a polynomial time algo-
rithm for GapLabelCover1,ε(Σ) will imply a O(nO(log log n) algorithm forE3SAT. Therefore we
conclude the following theorem

Theorem 1.4.The problemGapLabelCover1, 1
log3 n

is not inP unlessNP ∈ DTIME(nO(log log n))

TheGapLabelCover1,ε(Σ) problem is in some sense the mother of all inapproximability results
for NP-hard problems. In other words, it occupies the same distinction that the problemE3SAT
does for provingNP hardness of problems. By now, a large number of inapproximability results
useGapLabelCover1,ε(Σ) as the starting point for the reduction. This is probably because of the
following reasons

• The constraintsπe(a) = b, in GapLabelCover1,ε(Σ) are very simple, and are natural to
model using gadgets in several contexts

• It also helps to have arbitrarily large gap1
ε
, in the input to a reduction.

• Prior success usingGapLabelCover1,ε(Σ) for reduction, prompts one to attempt a reduction
from GapLabelCover1,ε(Σ). Thus with more attempts to use,GAPLC, there could have
been more reductions.

2 Set Cover

The set cover problem, is one of the classicNP-hard problems, for which an approximation algo-
rithm was obtained. In this lecture, we will be dealing with the unweighted version of Set Cover.

Definition 2.1. Unweighted Set Cover
Given a universeU with |U | = n, and setsS1 . . . Sm ⊂ U , such that⋃

i

Si = U

The computational task is to find a set of indicesI ∈ {1 . . . M} with the minimum cardinality such
that ⋃

i∈I

Si = U

3



2.1 Algorithm

A simple greedy algorithm produces the optimal approximation for Set-Cover. LetU ′ - denote the
set of elements yet to be covered. LetIC - denote the set of indicesi for which the setSi is already
chosen to the cover.

Greedy Algorithm

while U ′ not empty

• Find the setSi such that|Si

⋂
U ′| is maximized.

• Add Si to the set cover, andU ′ = U ′ − Si

Output the coverIC

For the above algorithm, a clever analysis yields the following approximation result.

Theorem 2.2.The Greedy Algorithm is aln n approximation algorithm, wheren is the size of the
universeU .

3 Inapproximability of Set Cover

In this section, we will show the following inapproximability result for SET-COVER.

Theorem 3.1. There existsc > 0, such that no polynomial timec log N approximation algorithm
exists for SET COVER unlessNP ⊂ DTIME(nO(log log n)).

The above theorem implies that the greedy algorithm achieves the optimal inapproximability
results except up to constant factors. Infact, it can been shown that the greedy algorithm achieves
the exact optimal approximation ratio, in other words the following theorem has been shown in [2]

Theorem 3.2. For everyε > 0, there is no(1 − ε) ln N approximation algorithm exists for SET
COVER unlessNP ⊂ DTIME(nO(log log n)).

In order to show theorem 3.1 we will be making a gadget reduction from the Label-Cover to
Set cover problem. Essentially for each edge we need a gadget to check a constraint likeπe(a) = b.
The result of the reduction is an instance of the Set-Cover problem. Therefore, in some sense we
want a collection of sets such that if the constraint for the edge is satisfied, then there is a small set
cover and vice versa. The gadgets that fit this requirement are called(m, l) set systems which we
describe below.

Definition 3.3. An(m, l)-set system consists of a universeB and collection of subsets{C1, . . . , Cm}
such that: If the Union of any collection ofl-sets in{C1, . . . , Cm, C1, . . . , Cm} is B, then the col-
lection must contain bothCi andCi for somei.
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From the definition of an(m, l)-set system, it is not apparent that they can be constructed
efficiently. Fortunately there are constructions of(m, l)-set systems, whose size and time to con-
struct are reasonably bounded. For the purposes of this lecture, we will assume that the following
theorem is true. We will see a proof-sketch in the coming lecture.

Theorem 3.4. An (m, l)-set system with a universe size|B| = O(22lm2) exists, and can be con-
structed in2O(l)mO(1) time.

Using the gadgets just described, we show a reduction from Label-Cover to Set-Cover below.
Label Cover Instance:

(G = (V1, V2, E), Σ, Π)

The alphabet consists ofΣ = {1, . . . ,m}, and thus|Σ| = m

Set Cover Instance:
Let B be a(m, l) set system. The universe for the set cover instance consists ofE × B.
Define the following subsets ofE ×B

• For all verticesv ∈ V2, andx ∈ Σ, define the subsetSv,x ⊂ E ×B as follows

Sv,x =
⋃
e3v

{e} × Cx

• For all verticesu ∈ V1, andy ∈ Σ, define the subsetSv,y ⊂ E ×B as follows

Su,y =
⋃
e3u

{e} × Cπe(y)

The notatione 3 u denotes that the edgee is incident at vertexu.
The Set Cover Instance produced by the reduction consists of(

E ×B, {Sw,x|w ∈ V1 ∪ V2, x ∈ Σ}
)

Lemma 3.5. (Completeness) If the LabelCover instanceG, has a labelling that satisfies all the
edgese ∈ E, then the Set-Cover instance produced has a set cover of size|V1|+ |V2|

Proof: Let σ : V1 ∪ V2 → Σ denote a labelling forG that satisfies all the edgesE. Pick the
following set of setsS = {Sw,σ(w)|w ∈ V1 ∪ V2}. The number of sets inS is |V1 + V2|. We claim
thatS is a valid set cover forE×B. Towards this, we show the following for every edgee = (u, v)

{e} ×B ⊂ Su,σ(u) ∪ Sv,σ(v) (1)

By definition ofSu,σ(u), Sv,σ(v) we have

Sv,σ(v) ⊇ {e} × Cσ(v) (2)
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Su,σ(u) ⊇ {e} × Cπe(σ(u))

But sinceσ satisfies all the edges, and in particular the edgee, we haveπe(σ(u)) = σ(v). There-
fore, we can write,

Su,σ(u) ⊇ {e} × Cπe(σ(u)) = {e} × C(σ(v) (3)

From equations 2 and 3, we can conclude equation1. Further taking union of equation 1, over all
edgese, we get

E ×B ⊆
⋃

u∈V1∪V2

Su,σ(u)

This concludes the proof

Lemma 3.6. (Soundness) If the LabelCover instanceG, has no labelling that satisfies more than
2
l2

fraction of the edges, then the Set-Cover instance has no set cover of size≤ l
8
(|V1|+ |V2|)

Proof: We will prove the contrapositive of the above lemma. Suppose, there is a set coverS with
|S| < l

8
(|V1|+ |V2|), then for each vertexw define the set of labels

Lw = {c ∈ Σ|Sw,c ∈ S}

Lw is in some sense the set of all labels, that the set cover solution ’assigns’ to vertexw. Therefore
the total number of sets chosen in the coverS is given by∑

w∈V1∪V2

|Lw| = |S|

Therefore the average cardinality ofLw satisfies∑
w∈V1∪V2

|Lw|

|V1|+ |V2|
=
S
8
≤ l

8

For atleast3
4

of the verticesw ∈ V1 ∪ V2 we have|Lw| ≤ l
2
. Otherwise, there will be more than1

4

of vertices with|Lw| > l
2
, thus making the sum

∑
w |Lw| > 1

4
× l

2
, a contradiction.

Observe that by regularity, atleast1
2

of the edges have both endpoints(u, v) with |Lu| < l
2

and
|Lv < l

2
.

Let us call an edgee = (u, v) to beFrugally Coveredif it satisfies|Lu| < l
2

and|Lv| < l
2
. Now

we will obtain a labellingσ for G as follows :
”For each vertexw ∈ V1 ∪ V2, defineσ(w) = x wherex is uniformly randomly chosen fromLw.”

We will show the following fact aboutσ, which will complete the proof

Fact 3.7. For the labellingσ obtained by the above random experiment, the expected fraction of
the edges satisfied is atleast2

l2
.

6



Proof: We show that each Frugally-Covered edge is satisfied byσ with probability≥ 4
l2

. Since

there are more than|E|
2

Frugally-Covered edges, the expected fraction of edges satisfied is atleast
1
2
× 4

l2
= 2

l2

Let e = (u, v) be a Frugally-Covered edge. LetLu = {a1, . . . , ap} andLv = {b1, . . . , bq} As e
is Frugally-Covered,p andq are less thanl

2
.

The sets inS, completely coverE × B, and in particular they covere× B. Note, that for any
vertexw other thanu,v we have|Sw,x ∩ {e × B}| = 0 for all x ∈ Σ. In other words, no element
of the sete×B can be covered by any of the setsSw,x for any vertexw other thanu, v. Therefore
the sete×B is covered by the sets chosen for verticesu andv.

{e} ×B ⊆ (

p⋃
i=1

Su,ai
) ∪ (

q⋃
j=1

Sv,bj
)

But note that by definition ofSv,x its interesection with{e} × B is {e} × Cx. Similarly
intersection ofSu,y with {e}×B is {e}×Cπe(y). Restricting the setsSu,ai

andSv,bj
to {e}×B in

the above containment we get

{e} ×B ⊆ ({e} ×
p⋃

i=1

Cπ(ai)) ∪ ({e} ×
q⋃

j=1

Cbj
)

Therefore we get

B ⊆ (

p⋃
i=1

Cπ(ai)) ∪ (

q⋃
j=1

Cbj
)

In other words, the setB is covered byp + q < l
2
+ l

2
= l sets, all of which areCi or Ci. Since

(B, Ci) form an(m, l) set system, for somei, bothCi andCi are present among thep + q sets.
This implies that for someai, bj we haveπe(ai = bj.

We are choosing the two labelsσ(u) andσ(v) uniformly at random fromLu andLw. Hence
with probability 1

p
· 1

q
we chooseσ(u) = ai andσ(v) = bj. Thus the probability thate is satisfied

by σ is atleast1
p
· 1

q
≥ 4

l2
. This completes the proof.

Proof of theorem 3.1: From theorem 1.4, we know that there is no polynomial time algorithm
to distinguish between Label Cover instances that are completely satisfiable, and those for which
atmost 1

log3 n
are satisfiable. Given aGapLabelCover1, 1

log3 n
instanceG, apply the reduction to Set

Cover withl = log n, m = Σ. From theorem 3.4, we know that the size of the(m, l) set-system is
polynomially bounded and can be constructed in time polynomial inn. The size of the Set-Cover
instance is thus a polynomial multiple of the size of the graphG. Therefore the reduction time is
bounded by the size of the graphG, which isO(nO(log log n)).

From lemma 3.5, we know that if the instanceG was satisfiable, then there is a Set Cover of size
|V1| + |V2|. The lemma 3.6 implies that ifG is atmost 1

log3 n
< 2

log2 n
satisfiable, then the set cover

size is atleastlog n
8

(|V1|+ |V2|). If there is a polynomial timelog n
8

approximation algorithm, then we
can distinguish between the two cases. Therefore if there is a polynomial timelog n

8
approximation

algorithm for Set cover, then we can solve aE3SAT or in general any problem inNP in time
bounded byO(nO(log log n)).
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