CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)
Lecture 14: Label Cover Hardness: Application to Set Cov¢
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In the previous lecture, we have seen the complete proNfroiardness of GapLabelCover Prob-

lem. From this point onwards, we shall use the results derived so far to obtain hardness of approxi-
mation results for some important problems. Towards this, we start with the problem of Set-Cover
in this lecture. However, since the hardness of GapLabelCover will be used in showing so many
inapproximability results, we take a closer look at the various parameters of the problem.

1 Label Cover Problem

Definition 1.1. Label Cover Instance:
A label cover instance consists @ = (V1, V2, E), 3, IT) where

e (G is a bipartite graph between vertex séfsand; and an edge sef.

e (G is left and right regular. Denote by); and D, the degrees of vertices ivi; and 1,
respectively.

e Each vertex in/; U V4 is to be assigned a label from the alphabgt

e For each edge, there is a constrainkl, which is a function front on to itself. Thus the set
of all constraints inG are
I=A{I.:>%— Xlee€ E}

The property that each constraint is a function frdhon to itself, is also referred to as the
Projection Property.

A labelling of the graph, is a mapping: V' — X which assigns a label for each vertex@f A
labelling o is said to satisfy an edge= (u, v) if and only if

Ie(o(u)) = o(v)
Let us define the following 'Promise’ of the Label-Cover Problem.

Definition 1.2. GapLabelCover; (X) Given an instancé’ of Label Cover such that either one of
the following is true

e There exists a labelling such that it satisfies all the edges G.

e For any labellingo of the vertices, not more tham£| edges are satisfied fy.



The computational problem is to determine which of the above two cases hald for

We call the above problem,Rromiseproblem because the input is promised to fall in to either
one of the two categories. Observe that, we do not care about the output if the input does not fall
in to either of the two categories. It is easy to check that, th@tjfLabelCover, (¥) is NP-hard
then approximatingzapLabelCover; .(X) within a factor ofe is NP-hard.

In the previous class, we have shown the following theorem.

Theorem 1.3.For all e > 0 there exists a constafit| such thatzapLabelCover; .(X) is NP-hard.

The above theorem essentially implies that: Giveli3& AT formula, there is a polynomial
time reduction that outputs a graphsuch that

e If the E3SAT is satisfiable then there is a labelling that satisfies all edgés in

e If the E3SAT is not satisfiable, then no labelling 6f satisfies more thanfraction of edges
inG.

Observe that our reduction implies something stronger than what is statedl in 1.3. For instance,
in the graphtz produced by the reduction, the degree of a node is independentldferefore let
us have a closer look at the various parameters of the grgmioduced.

Remember that the in-order to obtain the above reduction, we first reti36edl to GapLabelCover; .
for some constant. This reduction, was a polynomial time reduction, with the left and the right
degrees fixed constants independent of the size di38AT instance. We then reduced the sound-
nessc to e by using some sort of parralel repetition. The size of the graph produced, and the time
taken in this step depends on the value of¢h@herefore, our choice of the Parralel Repetition
theorem, dictates the size of the graph produced and the time taken to produce it. In the table
below, we summarize the values of the various parameters, for two different parralel Repetition
theorems.

Result Alphabet Left Degree| Right Number of| Reduction
Size|X| D, DegreeD, | vertices Time

Feige/Kilian[1] | (2¢)°® (2)°M (2¢)00) (ne)o® ()0

Raz[3 (1)om (1)0® (1o nOlog D) 5,00z 1)

It is apparent from the table that, for a giventhe size of the graphs produced by using
Raz’s parralel repetition theorem are much smaller. This means that, the gaps that can be pro-
duced by Raz’s theorem in a fixed polynomial time are much higher, and larger gaps usually
translate to better inapproximability results. For the purposes of this lecture, we will be using the
GapLabelCover; (X)) instance obtained using Raz’s parralel repetition theorem.

However there is one technical point that needs clarification. Observe that the reduction from
E3SAT to LabelCover used in the proof of theoréml.3, does not produce a graph that is right
regular. In fact, the degree of a vertex corresponding to a variable, is equal to the number of
different clauses in which the variable appears. Fortunately, there is a very easy way to obtain,
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a graph that is right-regular. Instead of creatingis@LabelCover, . instance starting from a
GapE3SAT instance, we start wittkapE3SAT(5) instance. AGapE3SAT(5) is nothing but the
GapE3SAT instance with the additional constraint that each variable occurs in exactly 5 clauses.
Therefore, the right degree of the gra@hf there arek-parralel repetitions, is given if.

Note that the number of times we perform parralel repetition, can be functioyaofd still the
above results continue to hold. So choosing log;?’n’ we get a reduction fromi3SAT instances

of sizen to GapLabelCover; .(¥) instances of siz&(n(°¢l°sm), Hence a polynomial time algo-
rithm for GapLabelCover; .(X) will imply a O(n©{°slen) algorithm forE3SAT. Therefore we
conclude the following theorem

Theorem 1.4. The problenGapLabelCover, 1 is notinP unlessNP € DTIME(n®Uoglosn))

’ log3 n

TheGapLabelCover, (X) problem is in some sense the mother of all inapproximability results
for NP-hard problems. In other words, it occupies the same distinction that the prét3igail
does for provingNP hardness of problems. By now, a large number of inapproximability results
useGapLabelCover; (X) as the starting point for the reduction. This is probably because of the
following reasons

e The constraintsr.(a) = b, in GapLabelCover; .(X) are very simple, and are natural to
model using gadgets in several contexts

e It also helps to have arbitrarily large gépin the input to a reduction.

e Prior success usinGapLabelCover; ((X) for reduction, prompts one to attempt a reduction
from GapLabelCover, (). Thus with more attempts to us€,APLC, there could have
been more reductions.

2 Set Cover

The set cover problem, is one of the classie-hard problems, for which an approximation algo-
rithm was obtained. In this lecture, we will be dealing with the unweighted version of Set Cover.

Definition 2.1. Unweighted Set Cover
Given a universé/ with |U| = n, and sets5; ... S,, C U, such that

The computational task is to find a set of indides {1 ... A/} with the minimum cardinality such

that

icl



2.1 Algorithm

A simple greedy algorithm produces the optimal approximation for Set-Covet/'L-edenote the
set of elements yet to be covered. Lgt- denote the set of indicégor which the sefS; is already
chosen to the cover.

Greedy Algorithm

while U’ not empty
e Find the sefS; such that.S; () U’| is maximized.

e Add S; to the set cover, ant’ = U’ — S

Output the covel

For the above algorithm, a clever analysis yields the following approximation result.

Theorem 2.2. The Greedy Algorithm is | n approximation algorithm, where is the size of the
universel.

3 Inapproximability of Set Cover

In this section, we will show the following inapproximability result for SET-COVER.

Theorem 3.1. There existg > 0, such that no polynomial timelog N approximation algorithm
exists for SET COVER unle¥$® C DTIME(nC(eglosn)),

The above theorem implies that the greedy algorithm achieves the optimal inapproximability
results except up to constant factors. Infact, it can been shown that the greedy algorithm achieves
the exact optimal approximation ratio, in other words the following theorem has been shown in [2]

Theorem 3.2. For everye > 0, there is no(1 — €) In N approximation algorithm exists for SET
COVER unles® P C DTIME(nOUosloen)),

In order to show theorein 3.1 we will be making a gadget reduction from the Label-Cover to
Set cover problem. Essentially for each edge we need a gadget to check a constraji Jike b.
The result of the reduction is an instance of the Set-Cover problem. Therefore, in some sense we
want a collection of sets such that if the constraint for the edge is satisfied, then there is a small set
cover and vice versa. The gadgets that fit this requirement are ¢allgd set systems which we
describe below.

Definition 3.3. An(m, [)-set system consists of a univefsand collection of subsets”;, ..., C,, }
such that: If the Union of any collection 68ets in{C}, ..., C),,C\, ..., Cy} is B, then the col-
lection must contain botty; and C; for some.



From the definition of ar{m,()-set system, it is not apparent that they can be constructed
efficiently. Fortunately there are constructiongof, [)-set systems, whose size and time to con-
struct are reasonably bounded. For the purposes of this lecture, we will assume that the following
theorem is true. We will see a proof-sketch in the coming lecture.

Theorem 3.4. An (m, [)-set system with a universe siZg| = O(2%m?) exists, and can be con-
structed in2°WmOW time.

Using the gadgets just described, we show a reduction from Label-Cover to Set-Cover below.
Label Cover Instance:

(G = (‘/17 ‘/’2’ E)7 E? H)
The alphabet consists &f = {1,...,m}, and thugx| = m

Set Cover Instance:
Let B be a(m, ) set system. The universe for the set cover instance consigisof3.

Define the following subsets & x B

e For all verticesy € V,, andz € £, define the subset, , C E x B as follows

Suw = | J{e} x Cu

esv

e For all verticesy € V4, andy € 3, define the subset, , C £ x B as follows

S%y = U{e} X Cﬂe(y)

esu

The notatiore > u denotes that the edgsds incident at vertex.
The Set Cover Instance produced by the reduction consists of

(E X B, {Syzlwe ViUV, xe Z})

Lemma 3.5. (Completeness) If the LabelCover instartéehas a labelling that satisfies all the
edges € E, then the Set-Cover instance produced has a set cover dfigjze |V5|

Proof: Leto : V; UV, — X denote a labelling for7 that satisfies all the edgds. Pick the
following set of setsS = {S,, ,()|w € Vi U V2}. The number of sets i is |V} + V5|. We claim
thatS is a valid set cover foE' x B. Towards this, we show the following for every edge: (u, v)

{6} X B C Su,a(u) U Sv,a(v) (l)
By definition of S,, 5(u), Su,- () W have
Sv,a(v) 2 {6} X Ca(v) (2)

5



Su,a(u) 2 {6} X Gﬂ'e(o'(u))

But sinceo satisfies all the edges, and in particular the edgee haver.(o(u)) = o(v). There-
fore, we can write,

Suow) 2 {e} X Cr (o)) = {e} X Clow) (3)

From equationf|2 arjd 3, we can conclude equdiiidfurther taking union of equatign 1, over all
edges, we get
ExBC U Su,o(u)

ueV1UuVs

This concludes the proof ]

Lemma 3.6. (Soundness) If the LabelCover instarteghas no labelling that satisfies more than
% fraction of the edges, then the Set-Cover instance has no set cover of 5z, | + |V2|)

Proof: We will prove the contrapositive of the above lemma. Suppose, there is a setScontr
IS| < é(|V1| + |V3|), then for each vertew define the set of labels

L,={ceX|S,.€S}

L, is in some sense the set of all labels, that the set cover solution ’assigns’ toweitberefore
the total number of sets chosen in the ca¥eas given by

> Ll =8|

weViuUVa

Therefore the average cardinality bf, satisfies

> IL|

weViUVa . § <£
Vil + (V2] 8 78

For atleastﬁ of the verticesv € V; U V; we have|L, | < é Otherwise, there will be more th%n
of vertices with|L,,| > £, thus making the surlx, |L,,| > 1 x L, a contradiction.
Observe that by regularity, atlegsbf the edges have both endpoifits v) with |L,| < £ and
|L, < L.
Let2us call an edge = (u,v) to beFrugally Coveredf it satisfies|L,| <  and|L,| < L. Now
we will obtain a labellings for GG as follows :
"For each vertexv € V; U V,, defines(w) = = wherex is uniformly randomly chosen from,,.”
We will show the following fact about, which will complete the proof O

Fact 3.7. For the labellingo obtained by the above random experiment, the expected fraction of
the edges satisfied is atlegbt



Proof: We show that each Frugally-Covered edge is satisfied tgth probability > ;12 Since

there are more tha@ Frugally-Covered edges, the expected fraction of edges satisfied is atleast

1 4 _ 2
2 X E TR

Lete = (u,v) be a Frugally-Covered edge. LB} = {a,,...,a,} andL, = {by,...,b,} Ase
is Frugally-Coveredy andq are less thaé.

The sets inS, completely covel” x B, and in particular they coverx B. Note, that for any
vertexw other tharnu,v we have|S,,, N {e x B}| = 0 for all z € 3. In other words, no element
of the set x B can be covered by any of the séls, for any vertexw other tharnu, v. Therefore
the sete x B is covered by the sets chosen for vertioeando.

p q
{e} xBC (U Sua;) U (U Sub;)
i=1 j=1

But note that by definition of, . its interesection with{e} x B is {e} x C,. Similarly
intersection ofS, , with {e} x Bis{e} x Cr (). Restricting the setS, ,, andsS, ;, to {e} x Bin
the above containment we get

p q
{e} x B ({e} x JCrap) U ({e} x (U Cny)
i=1 Jj=1
Therefore we get
p q
B - (U Cﬂ'(az‘)) U (U ij)
i=1 j=1

In other words, the sé® is covered by + ¢ < é + é = [ sets, all of which ar€; or C;. Since
(B, C;) form an(m, ) set system, for somg bothC; andC;; are present among the+ ¢ sets.
This implies that for some;, b, we haver.(a; = b;.
We are choosing the two labelgu) ando(v) uniformly at random fron,, and Lw. Hence
with probability | - - we chooser(u) = a; anda(v) = b;. Thus the probability that is satisfied
by o is atleast: - 1 > 7. This completes the proof. O
Proof of theorem[3.1: From theorenj T4, we know that there is no polynomial time algorithm
to distinguish between Label Cover instances that are completely satisfiable, and those for which
atmosthld—n are satisfiable. Given@apLabelCover, 1 instance, apply the reduction to Set

’ log3 n

Cover withl = logn, m = ¥. From theorerh 3|4, we know that the size of the [) set-system is
polynomially bounded and can be constructed in time polynomial ifihe size of the Set-Cover
instance is thus a polynomial multiple of the size of the gr&phirherefore the reduction time is
bounded by the size of the graph which isO(n©(cgles™),

From lemm& 35, we know that if the instanGavas satisfiable, then there is a Set Cover of size

V1| + [Va]. The Iemm6 implies that & is atmostlog+n < bgi% satisfiable, then the set cover

size is atleast&” (V4| +|Va|). If there is a polynomial tim&%” approximation algorithm, then we
can distinguish between the two cases. Therefore if there is a polynomialﬂgiﬁmpproximation
algorithm for Set cover, then we can solvé&aSAT or in general any problem iV P in time
bounded byO (n®oslogn)), O
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