
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 4: PCP Theorem proof: Degree reduction, Expanderization
Oct. 10, 2005

Lecturer: Ryan O’Donnell Scribe: Vibhor Rastogi and Ryan O’Donnell

1 Constraint graphs and the PCP Theorem

Definition 1.1. A constraint graph(G, C) over alphabetΣ is defined to be an undirected graph
G = (V, E) together with a set of “constraints”C, one per edge. The constraint specified for edge
e ∈ E, call it ce ∈ C, is just a subset ofΣ× Σ.

Note that the graph is allowed to have multi-edges (representing multiple constraints over the same
pair of vertices) and self loops.

Definition 1.2. For a fixedΣ, the algorithmic problemMAX-CG(Σ) is defined as follows: Given
is a constraint graph(G, C); the goal is to find an “assignment”σ : V → Σ such that number of
“satisfied” edges inE — i.e., edgese = (u, v) such that(σ(u), σ(v)) ∈ ce — is maximized.

Note that the input size of an instance ofMAX-CG(Σ) is Θ(m log n), wherem is the number
of edges inG, n is the number of vertices inG, andthe constant hidden in theΘ(·) depends on
|Σ|. This is because the input includes an explicitly written constraint — i.e., a subset ofΣ×Σ —
on each edge.

To study the approximability ofMAX-CG(Σ), we define the gapped version of it:

Definition 1.3. GAP-CG(Σ)c,s (for 0 < s < c ≤ 1) is the following algorithmic decision problem:
Given a constraint graph(G, C),

• output YES if∃ σ such that fraction of edge-constraintsσ satisfies is≥ c;

• output NO if∀ σ the fraction of edge-constraintsσ satisfies is< s;

• otherwise output anything.

Our goal for the next few lectures will be to prove the following theorem. This theorem is
easily seen to imply the PCP Theorem, via the connections we saw in Lecture 2.

Theorem 1.4. (Implies the PCP Theorem.) There is a fixed alphabetΣ0 (the alphabetΣ0 =
{1, 2, . . . , 64} suffices) and a fixed constants0 < 1 (s0 = 1 − 10−6 probably suffices) such that
GAP-CG(Σ0)1,s is NP-hard.

1

2 Outline of the proof that GAP-CG(Σ0)1,s0 is NP-hard

To prove thatGAP-CG(Σ0)1,s0 is NP-hard we must reduce some NP-complete problem to it. We
will reduce from the3-COLOR problem. The3-COLOR can be viewed as a constraint graph
problem: here the alphabet isΣ = {1, 2, 3} and the constraints are all the same, inequality con-
straints. Note that it doesn’t hurt to let the alphabet beΣ0 ⊃ {1, 2, 3}; the constraints can disallow
any vertex-label that is not in{1, 2, 3}. Also note that in the YES case of3-COLOR, all of the
constraints can be simultaneously satisfied, whereas in the NO case of3-COLOR, every coloring
must violate at least one edge; hence we can say that in the NO case, at most a1 − 1/m fraction
of constraints can be simultaneously satisfied. (Herem is the number of edges.) Thus the fact that
3-COLOR is NP-hard can be stated as:

Theorem 2.1.GAP-CG(Σ0)1,1−1/m is NP-hard.

Our goal is to make a polynomial-time reduction from this problem that brings the factor in the
NO case down from1− 1/m to s0 < 1.

To understand how this reduction works, we will keep track of a number of parameters of
constraint graphs:

Definition 2.2 (Parameters of Constraint Graphs).Given a constraint graphG = ((V,E), C)
over alphabetΣ, we define the following parameters:

• size(G) is the totalsize in bits of expressing the constraint graph. This is something like
Θ(m log mpoly(|Σ|). Since|Σ| will always be a “constant”, keeping track of the size mostly
means keeping track of the number of edges,m.

• |Σ| is thealphabet size.

• deg(G) is the maximum vertex degree inG. We will also keep track of whetherG is a regular
graph.

• λ(G) is the size of the second-largest eigenvalue of the graphG. We will only define this
parameter when the graphG is d-regular.

• Most importantly,gap(G), thesatisfiability gapof the constraint graph system, is defined to
be thefraction of constraints that must be violated in any assignment toG. In other words,

gap(G) = 1− max
σ:V→Σ

{fraction of constraintsσ satisfies}
= fraction of constraints violated by the “best” assignmentσ.

gap(G) = 0 means that the constraint graph has a completely valid assignment.

To prove Theorem1.4, our plan is to reduceGAP-CG(Σ0)1,1−1/m (i.e.,3-COLOR) toGAP-CG(Σ0)1,s0.
In other words, we need a polynomial-time algorithm that takes a constraint graphG over alphabet

2

Σ0 andgap equal to either0 (the YES case) or≥ 1/m (the NO case) and outputs a new constraint
graphG′ with parameters

size′ = poly(size), Σ′ = Σ0, gap′ =

{
0 if gap = 0,

≥ 10−6 if gap ≥ 1/m

where here the unprimed parameters denote the parameters of the input constraint graphG and
the primed parameters denote the parameters of the output constraint graphG′. Here also10−6 is
equated with1− s0; i.e., it represents some small positive universal constant. We will accomplish
this reduction by running many small subroutines. Each subroutine is designed to “improve” one
parameter of the current constraint graph at hand. However, each will have “side effects” that hurt
the other parameters. Nevertheless, combining them in the right order will give a reduction that
slowly increases the gap, while keeping the other parameters reasonable.

Specifically, we will design emphfour polynomial-time subroutines which take as input a con-
straint graphG and output a constraint graphG′:

Degree-reduction.
Assumption: the alphabet isΣ0, constant sized.
Main effect:G′ becomes a regular graph, withdeg′ = d0, some universal constant.
Side effects:

• size′ = O(size) (i.e., the size goes up by a constant factor).

• The alphabet does not change.

• If gap = 0 thengap′ = 0. I.e., satisfiable c.g.’s get transformed to satisfiable c.g.’s.

• Otherwise,gap′ ≥ gap/O(1). I.e., the gap goes down by at most a universal constant.

Expanderization.
Assumption:G is regular anddeg is a constant.
Main effect: G′ becomes aconstant degree expander. I.e., G′ is d1-regular for some universal
constantd1, andλ′ < d1.
Side effects: Same side effects as in the Degree-reduction routine.

Gap amplification. This is the critical step and the main novelty in Dinur’s proof.
Assumption:G is an(n, d, λ)-expander, withλ < d universal constants; and, the alphabet isΣ0, a
constant.
Extra parameter: This subroutine is parameterized by a fixed constant we callt. We will later
explicitly say how to choose this constant.
Main effect: The main effect is that in the case wheregap > 0, the gap increases by a factor of
roughlyt. Specifically:

gap′
{

= 0 if gap = 0,

≥ t
O(1)

·min(gap, 1/t) else.

3

In other words, ifG was satisfiable then so isG′; however, ifG was not satisfiable, thenG′ has gap
which is larger by a factor oft — unless this is already bigger than the universal constant1/t, in
which case it just becomes at least1/t.
Side effects:

• size′ = O(size).

• The new alphabetΣ is a much huger constant; something likeΣdt

0 .

• deg′, λ′ may become bad; we don’t care what happens to them.

Composition (alphabet-reduction).
Main effect: The new alphabetΣ′ = Σ0. Side effects:

• size′ = O(size), where the constant depends on the input alphabet size|Σ|. (The dependence
is very bad, in fact; at least exponential.)

• If gap = 0 thengap′ = 0.

• Otherwise,gap′ ≥ gap/O(1).

We claim that if we can show how to do all four of these steps, then this can be used to prove
Theorem1.4and hence the PCP Theorem:

Proof. (of Theorem1.4) We begin from the NP-hard3-COLOR problem,GAP-CG(Σ0)1,1−1/m

(see Theorem2.1). Here we have a constraint graphG over alphabetΣ0 which hasgap = 0 in the
YES case andgap ≥ 1/m in the NO case. Suppose we run all four subroutines in order onG,
producing some new constraint graphG′. What results is thatsize′ = O(size), the alphabet ends
up still beingΣ0, and the newgap′ is either still 0 in the YES case, or it increases by a factor of
t/O(1) in the NO case (assuming this is still less than1/t). Let us select the constantt to be large
enough so that thist/O(1) is at least 2. (By inspecting the proofs of the four subroutines, one can
convince oneself thatt = 106 is more than sufficient.)

Treating these four subroutines as one black box now, we have a polynomial-time algorithm
that doubles the satisfiability gap (in the NO cases, assuming it’s below10−6), keeps the alphabet
equal toΣ0, and only blows up by the size by a constant factor. Our overall reduction is to simply
run this black boxlog m times. Note that the overall size blowup isO(1)log m = poly(m); i.e.,
polynomial. Thus the overall running time is also polynomial. Further, the gap either always stays
0 (in the YES case) or it goes up from1/m to at least the constant10−6 in the NO case. This
completes the proof.

Having outlined the proof, the rest of this lecture and the next four lectures are devoted to
showing how to do the four subroutines.

4

3 Degree-reduction

In this section we show how to do the degree-reduction step. The way to do this step is “well-
known” in the literature; it is sometimes called the “Expander Replacement Lemma” of Papadim-
itriou and Yannakakis.

In this step we will use the fact from Lectures 2 and 3 that there exist universal constants
λ0 < d0 such that(n, d0, λ0)-expanders can be explicitly constructed in timepoly(n).

Given an input constraint graph(G, C), the following transformation gives a new constraint
graph(G′, C ′) achieving our goals:

• Replace each vertexu ∈ V by deg(u) many vertices to get the new vertex setV ′. Denote
the set of new vertices corresponding tou by cloud(u). Each vertex incloud(u) naturally
corresponds with a neighbor ofu from G.

• For each edge(u, v) ∈ E, place an “inter-cloud” edge inE ′ between the associated cloud
vertices. This gives exactly one inter-cloud edge per vertex inV ′. Whatever the old con-
straint on(u, v) was, put the exact same constraint on this inter-cloud edge.

• For eachu ∈ V , put a(deg(u), d0, λ0)-expander oncloud(u). Further, putequalitycon-
straints on these expander edges.

We can observe that in this process each new vertex inV ′ has degree exactly equal tod0 + 1.
Thus we have created a(d0 + 1)-regular graph, as desired. Also number of newly added edges
is equal to

∑
uεV

deg(u)d0

2
= d0

∑
uεV

deg(u)
2

= d0|E|. Hence|E ′| = (d0 + 1)|E|; i.e., the number
of edges only went up by a constant factor. This implies that the overall size went up by only a
constant factor.

Thus it remains to show the properties of the new satisfiability gap. It is easy to see that if
the old gap was 0 then so is the new gap — given a satisfying assignment for the old constraint
graph one can just give each vertex incloud(u) the assignment tou, and this produces a satisfying
assignment in the new graph. Hence we only need to show that in the NO case,gap′ ≥ gap/O(1).

Lemma 3.1. gap′ ≥ gap/O(1).

Proof. Let σ′ : V ′ → Σ0 be a best assignment for(G′, C ′). To relate the fraction of edges inE ′

thatσ′ satisfies back to the gap in the old constraint graph, we define an “extracted” assignment
σ : V → Σ as follows:σ(u) is defined to be the “plurality vote” ofσ′ on cloud(u). By definition,
we know thatσ violates at leastγ|E| constraints in(G, C), where we writeγ = gap for brevity.

Let us defineSu to be the set of vertices incloud(u) on whichσ′ disagrees withσ(u). Suppose
e = (u, v) is one of the at leastγ|E| edges inG that are violated byσ. Let e′ be the corresponding
inter-cloud edge inE ′. The key observation to make is the following: Eitherσ′ violates the edge
e′ or one of the endpoints ofe′ belongs toSu or Sv. Thus we conclude:

γ|E| ≤ (# edges violated byσ′) +
∑
u∈V

|Su|.

5

From this key equation we immediately deduce that either a) the number of edges violated byσ′ is
at least(γ/2)|E|, or b)

∑
u∈V |Su| ≥ (γ/2)|E|. We now consider these two cases.

In case a), we can quickly finish. Sinceσ′ was a best assignment for(G′, C ′), we get

gap′ = # edges violated byσ′) ≥ γ

2
|E| = γ

2(d0 + 1)
|E ′|,

by our earlier calculation|E ′| = (d0 + 1)|E|. Sinced0 is an absolute constant we indeed get
gap′ ≥ gap/O(1), as claimed.

To deal with case b), for anyu ∈ V let Su
a denote the vertices inSu whichσ′ labels bya ∈ Σ0.

By definition ofSu as the non-plurality set, we must surely have|Su
a |/|cloud(u)| ≤ 1/2. Thus by

the fact that the cloud is an expander, we get that there are at leastΩ(1)·|Su
a | edges within the cloud

that come out ofSu
a . (Here theΩ(1) depends ond0 andλ0, but is some explicit positive constant.)

Further,every such edge is violated byσ′, since these edges all have “equality” constraints. Thus
overallσ′ violates at least the following number of edges:

∑
u∈V

∑
a

(Ω(1)/2)|Su
a | (each edge counted twice)

= (1/O(1))
∑
u∈V

|Su|

≥ (1/O(1))(γ/2)|E| (since we are in case b))

= (1/O(1))(γ/2)(|E ′|/(d0 + 1))

= (γ/O(1))|E ′|,

as desired. This completes the proof.

4 Expanderize

In this section we show how to do the Expanderization subroutine. This subroutine is very easy.
Given the constraint graphG with constant degreed, all we need to do is to superimpose an
(n, d0, λ0)-expander. (This may lead to multiple edges.) On each edge from the expander we sim-
ply put a “null” constraint; i.e., a constraint that is always satisfied.

Let us now check what the parameters ofG′ are. The new graph is regular with degreed + d0,
a constant. The new number of edges isn(d + d0)/2; since the old number of edges wasnd/2, we
see that the size of the new constraint graph has only gone up by a constant factor, as desired.

Next, the new constraint graph is indeed a constant degree expander. This is because the new
λ′ is at mostd + λ0 < d + d0, using the Lemma from Lecture 2 about superimposing expanders.

6

Finally, it remains to check the properties of the gap. In the case that the original gap was 0,
the new gap is still 0 — the old satisfying assignment is still a satisfying assignment. In general,
suppose we have any assignmentσ′ for the new constraint graph. Viewing it as an assignment for
the old constraint graph, we see that it must violate at leastgap|E| many old constraints. These
constraints are still violated in the new graph, and the total number of constraints in the new graph
is O(|E|). Hence every assignment in the new graph violates at leastgap/O(1) fraction of the
constraints, as needed.

5 “After Stopping Random Walks” and “Before Stopping Ran-
dom Walks”

For the next lecture’s discussion of the Gap Amplification step, we will need to understand special
kinds of random walks on regular graphs. We will now discuss these random walks and prove a
lemma about their properties. Note that the names “After/Before Stopping Random Walks” are not
standard — we just made them up for this proof!

In both of the following definitions,t ≥ 1 is some parameter.

Definition 5.1. An “After Stopping Random Walk” (A.S.R.W.) in a regular graphG = (V, E),
starting from a random vertex, consists of the following steps:

1. Pick a random vertexa ∈ V to start at.

2. Take a step along a random edge out of the current vertex.

3. Decide to stop with probability1
t
. Otherwise go back to step 2.

4. Name the final vertexb.

Definition 5.2. A “Before Stopping Random Walk” (B.S.R.W.) in a regular graphG = (V, E),
starting from a vertexv, consists of the following steps:

1. Stop with probability1
t
.

2. Take a step along a random edge out of the current vertex.

3. Go to step 1.

Note that A.S.R.W.’s always have length at least 1, whereas B.S.R.W.’s could have length 0. It
is also easy to see that the expected length of an A.S.R.W. is1/t.

A crucial lemma we will need for the Gap Amplification step is the following:

Lemma 5.3. Let k ≥ 1 be a fixed constant and(u, v) be a fixed edge in the regular graphG =
(V, E). Do an A.S.R.W. inG, conditioned on making exactlyk u → v steps. Then:

7

1. The distribution on the final vertexb is the same as if we did a B.S.R.W. starting fromv.

2. The distribution on the initial vertexa is same as if we did an B.S.R.W. starting fromu.

3. a andb are independent.

Proof. Let us start with 1. Suppose that instead of conditioning on making exactlyk u → v steps,
we instead condition on makingat leastk u → v steps. Then the proof of 1 becomes immediate.
This is because conditioned on the fact that we have to stepu → v at leastk times, the instant we
reach the vertexv for thekth time (before we decide to stop or not), there are no more additional
conditional restrictions. Thus the distribution onb, the final vertex, just becomes the same as the
distribution of the final vertex if we were doing a B.S.R.W. fromv.

For an A.S.R.W., letY be a random variable counting the number ofu → v steps. Thus our
previous argument demonstrates that for everyw ∈ V , the probabilityPr[b = w | Y ≥ k] is a
fixed constantPw independent ofk.

We now have the following calculation:

Pw = Pr[b = w | Y ≥ 1]

=
Pr[(b = w) ∧ (Y ≥ 1)]

Pr[Y ≥ 1]

=
Pr[(b = w) ∧ (Y = 1)] + Pr[(b = w) ∧ (Y ≥ 2)]

Pr[Y = 1] + Pr[Y ≥ 2]
.

But we know that
Pr[(b = w) ∧ (Y ≥ 2)]

Pr[Y ≥ 2]
,

which isPr[b = w | Y ≥ 2], is also equal toPw! It thus follows that

Pr[(b = w) ∧ (Y = 1)]

Pr[Y = 1]

is equal toPw; i.e.,Pr[b = w | Y = 1] = Pw. It is now easy to see how to showPr[b = w | Y = `]
is also equal toPw for each` = 2, 3, 4, . . . : just expand out the above calculation` steps and use
induction. This completes the proof of part 1 of the Theorem.

Part 2 of the Theorem follows immediately from the fact that A.S.R.W.’s are completely re-
versible; i.e., one can get the exact same distribution by pickingb at random and walking “back-
wards” toa, stopping with probability1/t after each step.

Finally, Part 3 is easy: Look at the chain of events in the A.S.R.W.:

a = v0, (DON’T STOP),v1, (DON’T STOP), . . . ,vT−1, (DON’T STOP),vT , (STOP)= b.

8

Conditioning on there being exactlyk u → v steps just fixes some middle portion of this chain.
But the chain is memoryless and reversible, soa andb can be generated independently once this
middle part is fixed.

9

