CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 4. PCP Theorem proof: Degree reduction, Expanderization
Oct. 10, 2005
Lecturer: Ryan O’Donnell Scribe: Vibhor Rastogi and Ryan O’Donnell

1 Constraint graphs and the PCP Theorem

Definition 1.1. A constraint grapiG, C) over alphabet: is defined to be an undirected graph
G = (V, E) together with a set of “constraintsC, one per edge. The constraint specified for edge
e € FE,callite, € C,isjustasubset of x .

Note that the graph is allowed to have multi-edges (representing multiple constraints over the same
pair of vertices) and self loops.

Definition 1.2. For a fixed:, the algorithmic problemMAX-CG(X) is defined as follows: Given
is a constraint grapH G, C); the goal is to find an “assignment’ : V' — ¥ such that number of
“satisfied” edges inE — i.e., edges = (u, v) such that(o(u),o(v)) € ¢, — is maximized.

Note that the input size of an instanceMAX-CG(X) is ©(m logn), wherem is the number
of edges inG, n is the number of vertices &, andthe constant hidden in th@(-) depends on
|X|. This is because the input includes an explicitly written constraint — i.e., a subSet af —
on each edge.

To study the approximability afIAX-CG(X), we define the gapped version of it:

Definition 1.3. GAP-CG(X). s (for 0 < s < ¢ < 1) is the following algorithmic decision problem:
Given a constraint grapliG, C),

e output YES il ¢ such that fraction of edge-constraintssatisfies is> c;
e output NO ifV ¢ the fraction of edge-constraintssatisfies is< s;
e otherwise output anything.

Our goal for the next few lectures will be to prove the following theorem. This theorem is
easily seen to imply the PCP Theorem, via the connections we saw in Lecture 2.

Theorem 1.4. (Implies the PCP Theorem.) There is a fixed alphabgt(the alphabet:, =
{1,2,...,64} suffices) and a fixed constant < 1 (sp = 1 — 107¢ probably suffices) such that
GAP-CG(Xy)1,s is NP-hard.

2 Outline of the proof that GAP-CG(X); s, iIs NP-hard

To prove thatGAP-CG(X) s, is NP-hard we must reduce some NP-complete problem to it. We
will reduce from the3-COLOR problem. The3-COLOR can be viewed as a constraint graph
problem: here the alphabetis = {1, 2,3} and the constraints are all the same, inequality con-
straints. Note that it doesn’t hurt to let the alphabetled {1, 2,3}; the constraints can disallow
any vertex-label that is not ifil, 2,3}. Also note that in the YES case 8fCOLOR, all of the
constraints can be simultaneously satisfied, whereas in the NO cage(l.OR, every coloring
must violate at least one edge; hence we can say that in the NO case, atiImeost/a: fraction

of constraints can be simultaneously satisfied. (Helie the number of edges.) Thus the fact that
3-COLOR is NP-hard can be stated as:

Theorem 2.1. GAP-CG(X¢)1,1-1/m iS NP-hard.

Our goal is to make a polynomial-time reduction from this problem that brings the factor in the
NO case down from — 1/m to sy < 1.

To understand how this reduction works, we will keep track of a number of parameters of
constraint graphs:

Definition 2.2 (Parameters of Constraint Graphs).Given a constraint graplt: = ((V, E),C)
over alphabet’, we define the following parameters:

e size(() is the totalsizein bits of expressing the constraint graph. This is something like
©(mlog mpoly(|3]). SincelX| will always be a “constant”, keeping track of the size mostly
means keeping track of the number of edges,

e |X|is thealphabet size

e deg(G) is the maximum vertex degreeGh We will also keep track of whethétis a regular
graph.

e \(G) is the size of the second-largest eigenvalue of the grapWe will only define this
parameter when the grapf is d-regular.

e Most importantlygap(G), thesatisfiability gapof the constraint graph system, is defined to
be thefraction of constraints that must be violated in any assignme@t tm other words,

gap(G) = 1-— ;rvlaxz{fraction of constraints satisfie$

= fraction of constraints violated by the “best” assignment

gap(G) = 0 means that the constraint graph has a completely valid assignment.

To prove Theorem.4, our planis to reduc&AP-CG(3)1,1-1/m (i.€.,3-COLOR) to GAP-CG(%)1,4,-
In other words, we need a polynomial-time algorithm that takes a constraint Grapér alphabet

Yo andgap equal to eithed (the YES case) or 1/m (the NO case) and outputs a new constraint
graphG’ with parameters

0 if gap =0,

size’ = poly(size), Y =Y, ap’ = .
poly(size) 0 &ab {2 1075 if gap > 1/m

where here the unprimed parameters denote the parameters of the input constrairdt graph
the primed parameters denote the parameters of the output constraintyramére alsol0-¢ is
equated withl — sq; i.e., it represents some small positive universal constant. We will accomplish
this reduction by running many small subroutines. Each subroutine is designed to “improve” one
parameter of the current constraint graph at hand. However, each will have “side effects” that hurt
the other parameters. Nevertheless, combining them in the right order will give a reduction that
slowly increases the gap, while keeping the other parameters reasonable.

Specifically, we will design emphfour polynomial-time subroutines which take as input a con-
straint graphG and output a constraint grajok:

Degree-reduction.

Assumption: the alphabet }5,, constant sized.

Main effect: G’ becomes a regular graph, withg' = d,, some universal constant.
Side effects:

size’ = O(size) (i.e., the size goes up by a constant factor).

The alphabet does not change.

If gap = 0 thengap’ = 0. l.e., satisfiable c.g.’s get transformed to satisfiable c.g.’s.

Otherwisegap’ > gap/O(1). l.e., the gap goes down by at most a universal constant.

Expanderization.

Assumption:G is regular andleg is a constant.

Main effect: G’ becomes aonstant degree expandet.e., G’ is d;-regular for some universal
constantd;, and\’ < d;.

Side effects: Same side effects as in the Degree-reduction routine.

Gap amplification. This is the critical step and the main novelty in Dinur’s proof.
Assumption:G is an(n, d, A)-expander, with\ < d universal constants; and, the alphabetjsa
constant.

Extra parameter: This subroutine is parameterized by a fixed constant we &&# will later
explicitly say how to choose this constant.

Main effect: The main effect is that in the case whesg > 0, the gap increases by a factor of
roughlyt. Specifically:

gap’ = if gap = 0,
o - min(gap, 1/t) else.

3

AV
‘{* o

In other words, ifG was satisfiable then sods’; however, ifG was not satisfiable, thed’ has gap
which is larger by a factor of — unless this is already bigger than the universal condtantn
which case it just becomes at leagt.

Side effects:

e size’ = O(size).
e The new alphabeft is a much huger constant; something mﬁ.

e deg’, M’ may become bad; we don't care what happens to them.

Composition (alphabet-reduction).
Main effect: The new alphabét’ = X,. Side effects:

e size’ = O(size), where the constant depends on the input alphabetsjz€éThe dependence
is very bad, in fact; at least exponential.)

e If gap = 0 thengap’ = 0.
e Otherwisegap’ > gap/O(1).

We claim that if we can show how to do all four of these steps, then this can be used to prove
Theoreml.4and hence the PCP Theorem:

Proof. (of Theorem1.4) We begin from the NP-harg-COLOR problem,GAP-CG(X0)1,1-1/m

(see Theorer@.1). Here we have a constraint grapghover alphabek, which hasgap = 0 in the

YES case andap > 1/m in the NO case. Suppose we run all four subroutines in orde¥,on
producing some new constraint graph What results is thatize’ = O(size), the alphabet ends

up still beingX,, and the newgap’ is either still 0 in the YES case, or it increases by a factor of
t/O(1) in the NO case (assuming this is still less tHd#). Let us select the constanto be large
enough so that this/O(1) is at least 2. (By inspecting the proofs of the four subroutines, one can
convince oneself that= 10° is more than sufficient.)

Treating these four subroutines as one black box now, we have a polynomial-time algorithm
that doubles the satisfiability gap (in the NO cases, assuming it's bilo), keeps the alphabet
equal toX,, and only blows up by the size by a constant factor. Our overall reduction is to simply
run this black boxogm times. Note that the overall size blowup@X1)'°e™ = poly(m); i.e.,
polynomial. Thus the overall running time is also polynomial. Further, the gap either always stays
0 (in the YES case) or it goes up froimm to at least the constand=° in the NO case. This
completes the proof. O

Having outlined the proof, the rest of this lecture and the next four lectures are devoted to
showing how to do the four subroutines.

3 Degree-reduction

In this section we show how to do the degree-reduction step. The way to do this step is “well-
known” in the literature; it is sometimes called the “Expander Replacement Lemma” of Papadim-
itriou and Yannakakis.

In this step we will use the fact from Lectures 2 and 3 that there exist universal constants
Ao < dp such thatn, dy, A\g)-expanders can be explicitly constructed in timey (n).

Given an input constraint grapld, C), the following transformation gives a new constraint
graph(G’, C’) achieving our goals:

e Replace each vertex € V by deg(u) many vertices to get the new vertex $&t Denote
the set of new vertices correspondingutdy cloud(u). Each vertex ircloud(u) naturally
corresponds with a neighbor offrom G.

e For each edgéu,v) € E, place an “inter-cloud” edge i’ between the associated cloud
vertices. This gives exactly one inter-cloud edge per verteéX’'inWhatever the old con-
straint on(u, v) was, put the exact same constraint on this inter-cloud edge.

e For eachu € V, put a(deg(u), do, \o)-expander orcloud(u). Further, putequality con-
straints on these expander edges.

We can observe that in this process each new vertéX imas degree exactly equal dg + 1.
Thus we have created(d, + 1)-regular graph, as desired. Also number of newly added edges
is equal toy ., M =doY v degT(“) = dy|E|. Hence|E'| = (dy + 1)|E|; i.e., the number
of edges only went up by a constant factor. This implies that the overall size went up by only a

constant factor.

Thus it remains to show the properties of the new satisfiability gap. It is easy to see that if
the old gap was O then so is the new gap — given a satisfying assignment for the old constraint
graph one can just give each vertexioud(u) the assignment to, and this produces a satisfying
assignment in the new graph. Hence we only need to show that in the NQeg'se, gap/O(1).

Lemma 3.1. gap’ > gap/O(1).

Proof. Let o’ : V! — 3, be a best assignment f6&’, C’). To relate the fraction of edges i
that o’ satisfies back to the gap in the old constraint graph, we define an “extracted” assignment
o:V — ¥ asfollows:o(u) is defined to be the “plurality vote” af’ on cloud(u). By definition,
we know thatr violates at leasy| F'| constraints infG, C), where we writey = gap for brevity.
Let us define5* to be the set of vertices ifloud(u) on whicho’ disagrees witly (u). Suppose
e = (u,v) is one of the at least|E| edges inG that are violated by. Lete’ be the corresponding
inter-cloud edge irE’. The key observation to make is the following: Eithéwiolates the edge
¢’ or one of the endpoints ef belongs taS* or S¥. Thus we conclude:

v|E| < (# edges violated by') + > " |5"|.

ueV

From this key equation we immediately deduce that either a) the number of edges violated by
atleast(y/2)|E|, orb) >, ., [S*] > (v/2)|E|. We now consider these two cases.

In case a), we can quickly finish. Sineéwas a best assignment fa&’, C’), we get

. g gl
' = # edges violated by') > —|F| = ———|F’
by our earlier calculationE’| = (dy + 1)|E|. Sinced, is an absolute constant we indeed get

gap’ > gap/O(1), as claimed.

To deal with case b), for any € V' let S¥ denote the vertices i6* which ¢’ labels bya € ¥,.
By definition of S* as the non-plurality set, we must surely h&yg|/|cloud(u)| < 1/2. Thus by
the fact that the cloud is an expander, we get that there are afdgastS”| edges within the cloud
that come out of". (Here the2(1) depends or, and)\,, but is some explicit positive constant.)
Further,every such edge is violated by, since these edges all have “equality” constraints. Thus
overallo’ violates at least the following number of edges:

Z Z 1)/2)|S%| (each edge counted twice)

ueV a

= (1/0(1)) 15"

ueV

> (1/0(1))(v/2)|E| (since we are in case b))
= (1/OW)(v/2)(IE"/(do + 1))
= (v/O()IE",

as desired. This completes the proof. O

4 Expanderize

In this section we show how to do the Expanderization subroutine. This subroutine is very easy.
Given the constraint grap&y’ with constant degred, all we need to do is to superimpose an

(n, dy, Ao)-expander. (This may lead to multiple edges.) On each edge from the expander we sim-
ply put a “null” constraint; i.e., a constraint that is always satisfied.

Let us now check what the parametergdfare. The new graph is regular with degree dy,
a constant. The new number of edges(ig + d;)/2; since the old number of edges was/2, we
see that the size of the new constraint graph has only gone up by a constant factor, as desired.

Next, the new constraint graph is indeed a constant degree expander. This is because the new
N is at mostd + Ay < d + dy, using the Lemma from Lecture 2 about superimposing expanders.

Finally, it remains to check the properties of the gap. In the case that the original gap was 0,
the new gap is still 0 — the old satisfying assignment is still a satisfying assignment. In general,
suppose we have any assignmehtor the new constraint graph. Viewing it as an assignment for
the old constraint graph, we see that it must violate at lgast~’| many old constraints. These
constraints are still violated in the new graph, and the total number of constraints in the new graph
is O(|E|). Hence every assignment in the new graph violates at feastO(1) fraction of the
constraints, as needed.

5 *“After Stopping Random Walks” and “Before Stopping Ran-
dom Walks”

For the next lecture’s discussion of the Gap Amplification step, we will need to understand special
kinds of random walks on regular graphs. We will now discuss these random walks and prove a
lemma about their properties. Note that the names “After/Before Stopping Random Walks” are not
standard — we just made them up for this proof!

In both of the following definitionst > 1 is some parameter.

Definition 5.1. An “After Stopping Random Walk” (A.S.R.W.) in a regular gragh= (V, E),
starting from a random vertex, consists of the following steps:

1. Pick a random vertex € V to start at.

2. Take a step along a random edge out of the current vertex.
3. Decide to stop with probability. Otherwise go back to step 2.
4. Name the final vertek

Definition 5.2. A “Before Stopping Random Walk” (B.S.R.W.) in a regular graph= (V, E),
starting from a vertex, consists of the following steps:

1. Stop with probability; .
2. Take a step along a random edge out of the current vertex.
3. Gotostep 1.

Note that A.S.R.W.'s always have length at least 1, whereas B.S.R.W.’s could have length 0. It
is also easy to see that the expected length of an A.S.RMt.is

A crucial lemma we will need for the Gap Amplification step is the following:

Lemma 5.3. Letk > 1 be a fixed constant and:, v) be a fixed edge in the regular graggh =
(V,E). Do an A.S.R.W. it7, conditioned on making exactlyu — v steps Then:

1. The distribution on the final vertéxis the same as if we did a B.S.R.W. starting fram
2. The distribution on the initial vertex is same as if we did an B.S.R.W. starting from
3. a andb are independent.

Proof. Let us start with 1. Suppose that instead of conditioning on making exaath v steps,

we instead condition on makirgg leastk u — v steps. Then the proof of 1 becomes immediate.
This is because conditioned on the fact that we have towstepy at leastk times, the instant we
reach the vertex for the kth time (before we decide to stop or not), there are no more additional
conditional restrictions. Thus the distribution drthe final vertex, just becomes the same as the
distribution of the final vertex if we were doing a B.S.R.W. frem

For an A.S.R.W., lel be a random variable counting the number.of> v steps. Thus our
previous argument demonstrates that for everg V, the probabilityPr[p = w | Y > k] is a
fixed constanf’,, independent of.

We now have the following calculation:

P, = Prp=w|Y >1]

But we know that
Pr[(b=w) A (Y > 2)]

Pr[Y > 2] ’
which isPr[b = w | Y > 2], is also equal td>,,! It thus follows that

Pr[(b=w) A (Y =1)]
PrlY =1]

is equal toP,; i.e.,Pr[b =w | Y = 1] = P,. Itis now easy to see how to shd®v[b = w | Y = (]
is also equal taP,, for each/ = 2,3, 4, ...: just expand out the above calculatibsteps and use
induction. This completes the proof of part 1 of the Theorem.

Part 2 of the Theorem follows immediately from the fact that A.S.R.W.'s are completely re-
versible; i.e., one can get the exact same distribution by pickeigrandom and walking “back-
wards” toa, stopping with probabilityl /¢ after each step.

Finally, Part 3 is easy: Look at the chain of events in the A.S.R.W.:
a = vy, (DON'T STOP),v;, (DON'T STOP), ... vr_1, (DON'T STOP),vr, (STOP)= 0.

Conditioning on there being exactlyu — v steps just fixes some middle portion of this chain.
But the chain is memoryless and reversiblegsandb can be generated independently once this
middle part is fixed. O

