
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 1: Introduction
Sep. 28, 2005

Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Proof, and The PCP Theorem

The PCP Theorem is concerned with the notion of “proofs” for mathematical statements. We begin
with a somewhat informal definition:

Definition 1.1. A traditional proof systemworks as follows:

• A statement is given. (e.g., “this graphG = · · · is 3-colorable” or “this CNF formula
F = (x1 ∨ x2 ∨ x10) ∧ · · · is satisfiable”).

• A proverwrites down a proof, in some agreed-upon format.

• A verifierchecks the statement and the proof, and accepts or rejects.

From the perspective of theory of computer science, we usually fix a constant size alphabet
and assume the statement and proof are strings over this alphabet; we also usually writen for
the length of the statement and measure lengths of strings and running times in terms ofn. The
familiar complexity class NP can be cast in this setup:

Remark 1.2. LanguageL is in NP iff there is apolynomial timedeterministic verifierV (a Turing
Machine, say) and an arbitrarily powerful proverP , with the following properties:

• “Completeness”: For everyx ∈ L, P can write a proof of lengthpoly(|x|) thatV accepts.

• “Soundness”: For everyx 6∈ L, no matter whatpoly(|x|)-length proofP writes,V rejects.

To equate the notion of the verifier being efficient with it being a deterministic polynomial time
algorithm is nowadays a bit quaint; ever since the late ’70s we have been quite happy to consider
randomized polynomial time algorithms to be efficient. As it turns out, when proof systems are
allowed to have randomized verifiers, some very surprising things can happen. This line of research
was begun in the early-to-mid ’80s by Goldwasser, Micali, and Rackoff [9] and also independently
by Babai [3, 4]. See the accompanying notes on the history of the PCP theorem. One pinnacle of
research in this area isThe PCP Theorem:

Theorem 1.3.(due to Arora-Safra (AS) [2] and Arora-Lund-Motwani-Sudan-Szegedy (ALMSS) [1])
“The PCP (Probabilistically Checkable Proof) Theorem”:

All languagesL ⊆ NP have a P.C.P. system wherein on inputx ∈ {0, 1}n:

1

• ProverP writes down apoly(n)-bit-length proof.

• Verifier V looks atx and does polynomial-time deterministic computation. ThenV uses
O(log n) bits of randomness to chooseC random locations in the proof. HereC is a absolute
universal constant; say, 100.V also uses these random bits to produce a deterministic test
(predicate)φ onC bits.

• V reads the bits in theC randomly chosen locations from the proof and does the testφ on
them, accepting or rejecting.

• Completeness: Ifx ∈ L thenP can write a proof thatV accepts with probability1.

• Soundness: For everyx 6∈ L, no matter what proofP writes,V accepts with probability at
most1/2.

Remark 1.4. This P.C.P. system has “one-sided error”: true statements are always accepted, but
there is a chance a verifier might accept a bogus proof. Note that this chance can be made an
arbitrarily small constant by naive repetition; for example,V can repeat its same spot-check 100
times independently, thus reading100C bits and accepting false proofs with probability at most
2−100.

The first time one sees this theorem, it seems a little hard to conceive how it can be true. It’s
even more striking when one learns that essentiallyC may be taken to be 3. (See Theorem 1.12
below.) How could you possibly be convinced a proof is true just by spot-checking it in 3 bits?

Remark 1.5. By the classical theory NP-completeness, it suffices to prove the PCP Theorem for
one particular NP-complete language — say, 3-COLORING or 3-SAT — since poly-time reduc-
tions can be built into the verifier’s initial step (and into the prover’s plans).

Remark 1.6. The PCP that the prover needs to write down can be obtained in deterministic poly-
nomial time from the “standard” proofs forx ∈ L (i.e., the coloring for 3-COLORING, the as-
signment for 3-SAT).

Remark 1.7. Sometimes enthusiastic descriptions of the PCP Theorem make it seem like it greatly
reduces thetime a verifier needs to spend to check a proof. This is not accurate since the verifier
still dies polynomial-time deterministic pre-computations; these may already take more time then
it would have taken to simply check a classical proof. What the PCP Theorem saves isproof
accesses. There is other work on developing proof systems that let the verifier save on time or
space (see the accompanying notes on the history of the PCP Theorem); however it seems to have
had fewer interesting applications.

Our first task in this course will be to prove Theorem 1.3 completely. The fact that this will
be possible is only due to a very recent development. The original proof of the PCP Theorem was
very intricate and difficult; it might have been up to 100 pages, with subsequent simplifications
bringing it down to a very densely packed 30 pages or so. However in April 2005, Irit Dinur gave
a new proof [5] which is elegant and clear and only a dozen pages or so long. This is the proof we

2

will see in the course.

Subsequent to the PCP Theorem were many more “PCP Theorems” that strengthened certain
parameters or extended the result in different directions. What follows are a few of these:

Theorem 1.8. (Feige-Kilian [8], Raz [17]) (Raz’s strong version of this result is sometimes called
“the Raz Verifier” or “hardness of Label Cover”): For every constantε > 0, there is a poly-
size PCP for NP that readstwo random proof entries written withO(1)-size alphabet and has
completeness 1, soundnessε.

Remark 1.9. Note that in this theorem, the poly-size of the PCP and the alphabet size both depend
on ε; with Raz’s version, the proof has lengthnO(log 1/ε) and the alphabet has sizepoly(1/ε).

Remark 1.10. The result proven is actually stronger in a technically subtle but important way:
One can additionally have the verifier use a predicateφ(x, y) with the “projection property”,
namely, that for every choice ofx there is exactly one choice ofy that makesφ(x, y) true.

Remark 1.11. Comparing this result to the basic PCP Theorem, we see that it uses a constant-
size alphabet and two queries to get arbitrarily small constant soundness, whereas the basic PCP
Theorem uses constantly many queries to a size-two alphabet. It might not be immediately clear
which is better, but it is indeed the former. There are several ways to look at this: For example,
with fewer queries you have fewer opportunities to “cross-check”; as an extreme, it’s clear that a
verifier that made only one query (to a constant size alphabet) could always be fooled. Or suppose
that you tried to encode every triple of bits in a proof with a single character from an alphabet of
size 8 — although you could now read three bits with just one query, the prover can cheat you by
encoding a single bit in different ways in different triples.

We hope to prove Theorem 1.8 in this course — at least, the Feige-Kilian version without the
projection property.

The following result essentially shows that we can takeC = 3 in the original PCP Theorem:

Theorem 1.12. (Håstad [12]) “3-LIN hardness”: For every constantε > 0, there is a poly-size
PCP for NP that reads justthreerandombitsand tests their XOR. Its completeness is1− ε and its
soundness is1/2 + ε.

Remark 1.13. This result has “imperfect completeness”. However, if one is willing to allow an
adaptivethree-bit-querying verifier (i.e., the verifier does not have to pick the three bits in advance
but can base what bit it reads next on what it’s seen so far) then one can get completeness1. This
is due to Guruswami, Lewin, Sudan, and Trevisan [10].

This result, which we will prove in the course, requires Theorem 1.8.

Finally, here is one more PCP Theorem which wewon’t prove:

Theorem 1.14.(due to Dinur [5], based heavily on a result of Ben-Sasson and Sudan [?]): In the
basic PCP Theorem, the proof length can be maden · polylog(n) rather thanpoly(n).

3

1.1 Hardness of approximation

Perhaps the most important consequence of the PCP theorems and the most active area of research
in the area are results about “hardness of approximation”. These will be the major focus of the
second half of this course. To be able to state hardness of approximation results, we need to
understand the notion of(NP) combinatorial optimization problems. Instead of making a formal
definition we will just give some examples. Briefly, these are “find the best solution” versions of
classic NP-complete problems.

Definition 1.15. MAX-E3SAT: Given an E3CNF formula — i.e., a conjunction of “clauses” over
boolean variablesx1, . . . , xn, where a clause is an OR of exactly 3 literals,xi or xi — find an
assignment to the variables satisfying as many clauses as possible.

Definition 1.16. SET-COVER: Given a bunch of setsS1, . . . , Sm ⊆ {1, . . . , n}, find the fewest
number of them whose union covers all of{1, . . . , n}. (We assume that every ground elementi is
in at least one setSj.)

Definition 1.17. MAX-CLIQUE: Given an undirected graph, find the largest clique in it, where a
clique is a subset of vertices which contain all possible edges.

Definition 1.18. KNAPSACK: Given are “weights”w1, . . . , wn ≥ 0 of n items and also “values”
v1, . . . , vn ≥ 0. Also given is a “capacity”C. Find a set of itemsS such that

∑
i∈S wi ≤ C while

maximizing
∑

i∈S vi.

Remark 1.19.Each of these is associated to a classic NP-complete decision problem; e.g., “CLIQUE:
GivenG andk, doesG have a clique of size at leastk?” Notice that frequently the NP decision
problem is a contrived version of the more natural optimization problem.

Remark 1.20. Combinatorial optimization problems can be divided into two categories: Maxi-
mization problems (like MAX-3SAT, MAX-CLIQUE, KNAPSACK) and minimization problems (like
SET-COVER).

It is well-known that these problems are all NP-hard. However, suppose that for, say, MAX-
E3SAT, there was a polynomial time algorithm with the following guarantee: Whenever the input
instance has optimum OPT — i.e., there is an assignment satisfying OPT many clauses — the
algorithm returns a solution satisfying99.9%× OPT many clauses. Such an algorithm would be
highly useful, and would tend to refute the classical notion that the NP-hardness of MAX-E3SAT
means there is no good algorithm for it.

Indeed, such results are known for the KNAPSACK problem. As early as 1975, Ibarra and
Kim [14] showed that for everyε > 0 there is an algorithm for KNAPSACK that runs in time
poly(n/ε) and always returns a solution which is within a(1−ε) factor of the optimal solution. So,
although KNAPSACK is NP-complete, in some sense it’s very easy. Let us make some definitions
to capture these notions:

Definition 1.21. Given a combinatorial optimizationmaximizationproblem, we say algorithmA
is anα-approximation algorithm(for 0 < α ≤ 1) if whenever the optimal solution to an instance

4

has valueOPT, A is guaranteed to return a solution with value atleastα · OPT. We make the
analogous definition forminimizationproblems, withα ≥ 1 andA returning a solution with value
at mostα ·OPT. Unless otherwise specified, we will also insist thatA runs in polynomial time.

Remark 1.22. Our definition for maximization problems is sometimes considered unconventional;
some like to always haveα ≥ 1, in which case their notion is that the algorithmA returns a
solution with value at leastOPT/α.

Definition 1.23. A maximization (resp., minimization) combinatorial optimization problem is said
to have aPTAS(Polynomial Time Approximation Scheme) if it has a(1− ε)-approximation algo-
rithm (resp.,(1 + ε)-approximation algorithm) for every constantε > 0.

As mentioned, the KNAPSACK problem has a PTAS, and this is true of certain other combi-
natorial optimization problems, mostly related to scheduling and packing. But what about, say,
MAX-E3SAT? It is a remarkable consequence of the PCP Theorem that MAX-E3SAT has no
PTAS unlessP = NP. In fact, the two statements are basically equivalent!

Theorem 1.24.(credited to an unpublished 1992 result of Arora-Motwani-Safra-Sudan-Szegedy):
Speaking roughly, the PCP Theorem is equivalent to the statement, “MAX-E3SAT has no PTAS
assumingP 6= NP”.

We will precisely formulate and prove this theorem in the next lecture.

Indeed, most work in the PCP area these days is centered on proving “hardness of approx-
imation” results like Theorem 1.24. We will state here a few striking “optimal hardness-of-
approximation results” that have followed from work on PCP theorems.

Theorem 1.25.(follows from H̊astad’s Theorem 1.12): MAX-E3SAT has no(7/8+ε)-approximation
algorithm for any constantε > 0 unlessP = NP.

We will see the proof of this in the course.

Remark 1.26. There is a very easy7/8-approximation algorithm for MAX-E3SAT: Just picking a
random assignment gives a7/8-approximation in expectation, and this algorithm is easily deran-
domized.

Regarding SET-COVER:

Theorem 1.27. (Feige [6]): SET-COVER has no(1 − ε) ln n approximation algorithm for any
constantε > 0 unlessNP ⊆ DTIME(nlog log n).

Remark 1.28. The greedy algorithm achieves a(ln n + 1)-approximation algorithm. (John-
son [15])

Remark 1.29. The fact that we have the conclusion “unlessNP ⊆ DTIME(nlog log n)” is due to
technical difficulties; however since the conclusion is almost as unlikely asNP = P, we don’t
really mind much.

5

We won’t prove Feige’s theorem about SET-COVER in this course but we will prove a due to
Lund and Yannakakis [16], that shows hardness of giving aΩ(log n)-approximation.

The situation for MAX-CLIQUE is direst of all:

Theorem 1.30.(due to H̊astad [11], with a significant simplification by Samorodnitsky-Trevisan [18],
another simplification by H̊astad and Wigderson [13], and a slight improvement by Zuckerman in
September 2005 [19]): MAX-CLIQUE has no(1/n1−ε)-approximation for any constantε > 0
unlessP = NP.

Remark 1.31. There is a trivial1/n-approximation: Output a single vertex.

We won’t prove this theorem in the course, but the weaker result that(1/nΩ(1))-approximating
is hard follows relatively easily from the main PCP Theorem, via a reduction given by Feige-
Goldwasser-Lovasz-Sudan-Szegedy [7]. We will give this reduction later in the course.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems.Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.J.
ACM, 45(1):70–122, 1998.

[3] L. Babai. Trading group theory for randomness. InProceedings of the 17th Annual ACM
Symposium on Theory of Computing, STOC’85 (Providence, RI, May 6-8, 1985), pages 421–
429, New York, 1985. ACM, ACM Press.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy
of complexity classes.Journal of Computer and System Sciences, 36(2):254–276, Apr. 1988.

[5] I. Dinur. The pcp theorem by gap amplification. ECCC, TR05-046, 2005.

[6] U. Feige. A threshold of ln n for approximating set cover.J. ACM, 45(4):634–652, 1998.

[7] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques.J. ACM, 43(2):268–292, 1996.

[8] U. Feige and J. Kilian. Two-prover protocols — low error at affordable rates.SIAM J.
Comput., 30(1):324–346, 2000.

[9] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems.SIAM J. Comput, 18(1):186–208, 1989.

6

[10] V. Guruswami, D. Lewin, M. Sudan, and L. Trevisan. A tight characterization of NP with
3 query PCPs. InProceedings of the 39th Annual Symposium on Foundations of Computer
Science(FOCS-98), pages 8–17, Los Alamitos, CA, Nov.8–11 1998. IEEE Computer Society.

[11] J. Håstad. Clique is hard to approximate to withinn1−ε. Acta Mathematica, 182:105–142,
1999.

[12] J. Håstad. Some optimal inapproximability results.J. ACM, 48(4):798–859, 2001.

[13] J. Håstad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.Random
Struct. Algorithms, 22(2):139–160, 2003.

[14] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems.Journal of the ACM, 22(4):463–468, Oct. 1975.

[15] D. S. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Syst. Sci,
9(3):256–278, 1974.

[16] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.J.
ACM, 41(5):960–981, 1994.

[17] R. Raz. A parallel repetition theorem.SIAM J. Comput, 27(3):763–803, 1998.

[18] A. Samorodnitsky and L. Trevisan. A PCP characterization ofNP with optimal amortized
query complexity. InProceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, STOC’2000 (Portland, Oregon, May 21-23, 2000), pages 191–199, New York, 2000.
ACM Press.

[19] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. ECCC, TR05-100, 2005.

7

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 2: PCP Theorem and GAP-SAT; intro to expanders
Oct. 3, 2005

Lecturer: Ryan O’Donnell and Venkatesan Guruswami Scribe: Atri Rudra

1 The GAP-SAT problem and the PCP theorem

In the last lecture we said we will prove NP-hardness of approximation algorithms. To do this,
we will follow the same approach that is used in NP-completeness — we convert an optimization
problem into a decision problem. For a concrete example recall theMAX-3ESAT problem: each
clause of the input boolean formula is an OR of exactly three literals and the goal is to find an
assignment that maximizes the number of satisfied clauses. We now define the decision version of
this problem.

Definition 1.1. GAP-E3SATc,s (0 < s ≤ c ≤ 1): Given anE3SAT formula onm clauses,

• output YES ifOPT ≥ cm;

• output NO ifOPT < sm;

• output anything ifsm ≤ OPT < cm.

Remark 1.2. Recall thatGAP-E3SAT being NP-hard means that there is a deterministic poly-
nomial time reduction,R, from your favorite NP-complete language (say3-COLOR) to E3SAT,
such that

• Completeness: givenG ∈ 3-COLOR,R(G) gives anE3SAT formula withOPT ≥ cm;

• Soundness: givenG 6∈ 3-COLOR,R(G) gives anE3SAT formula withOPT < sm.

Remark 1.3. GAP-E3SATc,s being NP-hard implies that there is no polynomial time
(

s
c

)
-factor

approximation algorithm forMAX-3ESAT unlessP = NP. To see this implication, assume we
have such an algorithm; we then show how to solve3-COLOR in polynomial time. To do this,
given a graphG apply the reductionR reducing it toE3SAT and then run the supposed

(
s
c

)
-

factor approximation algorithm. IfG ∈ 3-COLOR then this will produce an assignment that
satisfies at least

(
s
c

)
cm = sm clauses inR(G). If G 6∈ 3-COLOR, the algorithm will be unable

to produce an assignment that satisfies as many assm clauses ofR(G). Thus, we can distinguish
the two cases and get a polynomial time algorithm for3-COLOR.

In this lecture, we will show the following result.

Theorem 1.4.The following two statement are equivalent:

1

1. The PCP theorem;

2. There exists an universal constants < 1 such thatGAP-E3SAT1,s is NP-hard.

Proof. We first show that the second statement implies the first. To this end assume that
GAP-E3SAT1,s is NP-hard. We will construct aPCP system for3-COLOR. Given an instance
G of 3-COLOR on n vertices, the verifierV runs the reduction from3-COLOR to E3SAT —
let ψ be the constructed formula onm clauses. The proof that the proverP will provide will be
an assignment to the variables inψ (note thatψ has polynomial (inn) many variables). Finally,
V useslogm = O(log n) random bits to choose a random clause (call this clauseφ), queries
the proof on the variables in the clause, and checks if the given assignment satisfiesφ. Note that
the number of positions probed here,C, is 3. We now show that the abovePCP system has the
required properties.

• Completeness: IfG ∈ 3-COLOR thenψ hasOPT = m. In this caseP can write down
the optimal assignment, which implies that all the clauses are satisfied, and henceV accepts
with probability1.

• Soundness: IfG 6∈ 3-COLOR thenψ hasOPT < sm. Thus for any assignmentP provides,
V picks a a satisfied clause with probability less thans; that is,V accepts with probability
less thans. The soundness can be brought down to1/2 by repeating the checkO(1) many
times independently in parallel.

We now show that the first statement of the theorem implies the second. To this end, assume
the PCP theorem. We will now give a deterministic polynomial time reduction from3-COLOR
to GAP-E3SAT1,s. We will think of the bits of the proof as variablesx1, x2, · · · , xpoly(n) for
anE3SAT formula. GivenG,R will first run the verifier’s polynomial time pre-computation steps.
ThenR enumerates all the2O(log n) = poly(n) = N random choices ofV — each choice gives
someC proof locations(xi1 , xi2 , · · · , xiC) and a predicateφ on theC bits. R further canonically
convertsφ(xi1 , xi2 , · · · , xiC) to an equivalent E3CNF formula (in this stepR may need to add
some auxiliary variables,y1, y2, · · · , yC′). Without loss of generality we may assume that each
equivalent E3CNF has exactlyK clauses whereK = C · 2C . Finally,R outputs the conjunction of
all thesem = N ·K clauses. We now argue that this reduction works.

• Completeness: IfG ∈ 3-COLOR then we know there is a proof that satisfies all of the ver-
ifier’s checks. Thus all of the E3CNF formulas the reduction outputs can be simultaneously
satisfied; i.e.,OPT = m as needed.

• Soundness: IfG 6∈ 3-COLOR, then for every proof (assignment to thexi’s) and assignment
to the auxiliary variables, at least half of the verifier’sN checks must fail. Whenever a check
fails, the corresponding E3CNF has at mostK − 1 = K(1 − 1/K) many satisfied clauses.
Thus overall, the number of simultaneously satisfiable clauses is at most

N

2
K(1 − 1/K) +

N

2
K = NK

(
1 − 1

2K

)
= m

(
1 − 1

2K

)
.

2

Thus,OPT ≤ sm, wheres = (1 − 1
2K

), and this is an absolute constant less than 1 as
needed.

2 The proof of the PCP theorem and expanders

Armed with Theorem 1.4, we will prove the PCP theorem by showing thatGAP-E3SAT1,s is NP-
hard for somes < 1. Dinur’s paper in fact proves this version of the PCP theorem. Her proof uses
objects called expanders — in this and the next lecture, we will spend some time developing facts
about expanders.

To give a rough idea of where expanders fit in the scheme of things, here is a brief overview
of Dinur’s proof. Note that it is easy to see from the proof of Theorem 1.4 that the PCP theorem
is also implied by showing thatGAP3-COLOR1,s is NP-hard, where in this gap version, the
quantity we are interested in is the number of edges in a 3-coloring that are colored properly.
The way Dinur’s proof work is to start with the fact that3-COLOR is NP-hard, from which one
immediately deduces thatGAP3-COLOR1,1− 1

m
is NP-hard, wherem is the number of edges.

(This is because in any illegal 3-coloring, at least one edge must be violated.) The proof will try to
amplify the “soundness gap” from1

m
up to some universal constant. At each stage the proof will

be working with aconstraint graphG (initially, the constraints in the input to3-COLOR is that
the endpoints of each edge have differnt colors from{1, 2, 3}). In the most important step of the
proof, a new graphGt is constructed fromG, where the constraints inGt correspond to walks inG
of lengtht. If the constraint graphs are nicely structured (i.e., are constant-degreeexpanders) then
these walks inG will mix nicely.

3 Expanders

Roughly speaking, expanders are graphs that have no “bottlenecks”. In other words, they are
graphs with high connectivity. More formally, we will be interested in the following quantity:

Definition 3.1. Theedge expansionof a graphG = (V,E), denoted byφ(G), is defined as

φ(G) = min
S⊆V,|S|≤ |V |

2

|E(S, S)|
|S|

,

whereS = V \ S andE(S, S) = {(u, v) ∈ E | u ∈ S andv ∈ S}.

We sayG is anexpanderif φ(G) is “large” (at least some positive constant). Note however
that it is not hard to find such a graph; for example, the complete graph hasφ(G) ≥ Ω(n). The
challenge is to findsparseexpanders, especiallyd-regular expanders for some constantd. In fact
such sparse expanders exist and can be constructed explicitly.

Theorem 3.2. There exist constantsd > 1 andφ0 > 0 and an explicit family ofd-regular graphs
{Gn}n≥1 such thatφ(Gn) ≥ φ0.

3

3.1 Alternate definition of expanders

We now consider an alternate way of looking at expanders. For anyd-regular graphG, let AG

denote theadjacency matrix, that is,AG
ij is 1 if (i, j) ∈ E(G) and0 otherwise (one could also work

with multi-graphs in which case for an edge(i, j), AG
ij would be the multiplicity of that edge).

For the all-ones vector,~v = ~1, AG~v = d · ~v; that is,~v is an eigenvectorwith eigenvalue
d. If A is a real and symmetricn × n matrix (asAG is) thenA hasn real-valued eigenvalues
λ1 ≥ λ2 · · · ≥ λn. ForAG, λ1 = d is easily seen to be the largest eigenvalue.

Definition 3.3. A d-regular graphG is an (n, d, λ)-expanderif λ = max{|λi(G)| : i 6= 1} =
max{λ2(G), |λn(G)|} andλ < d.

This definition of an expander is closely related to the definition we saw before.

Theorem 3.4. If G is a (n, d, λ)-expander then

φ(G)2

2d
≤ d− λ ≤ 2φ(G).

In other words, large expansion is equivalent to largespectral gap(that is,d − λ). We will
see the proof of the upper bound (which is the direction we actually need) next lecture. Explicit
constructions of expanders tend to work with this spectral definition:

Theorem 3.5. There exist explicit constantsd ≥ 3 andλ < d and an explicit (polynomial-time
computable) family of(n, d, λ)-expanders.

The second-largest eigenvalueλ of a real symmetricn × n is characterized as follows (via a
“Rayleigh quotient”):

λ = max
x∈Rn,x·~1=0,x 6=0

|〈Ax, x〉|
〈x, x〉

. (1)

Let us show this. AsA is a real symmetric matrix, there exists an orthonormal basis~v1, ~v2, · · · , ~vn

where each~vi is an eigenvector ofA. Lettingx = ~v2 yields a ratio in (1) of|λ2|; similarly, we can
let x = ~vn and get a ratio of|λn|. Thus, we certainly have≤ in (1). For the other direction, write
anyx as

∑n
i=1 ai~vi. Using〈x,~v1〉 = 0, we concludea1 = 0. NowAx =

∑n
=1 aiλi~vi and thus,

|〈Ax, x〉| =

∣∣∣∣∣
n∑

i=2

a2
iλi

∣∣∣∣∣ ≤
n∑

i=2

|λi|a2
i ≤ λ

n∑
i=2

a2
i = λ〈x, x〉

as required.

Finally, we conclude this lecture by proving a simple lemma that will be used in the proof of
the PCP theorem.

Lemma 3.6. If G is ad-regular graph on the vertex setV andH is ad′-regular graph onV then
G′ = G ∪H = (V,E(G) ∪ E(H))1 is ad+ d′-regular graph such that

λ(G′) ≤ λ(G) + λ(H)

1 Here the union of edges results in a mutliset.

4

Proof. Choosex such that‖x‖ = 1, x ·~1 = 0 andλ(G′) = 〈AG′
x, x〉. Now

〈AG′
x, x〉 = 〈AGx, x〉 + 〈AHx, x〉

≤ λ(G) + λ(H).

The equality follows from the definition ofG′ and the inequality follows from (1).

5

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 3: Expander Graphs and PCP Theorem Proof Overview
Oct. 5, 2005

Lecturer: Venkatesan Guruswami Scribe: Matt Cary

1 Key Expander Graph Lemmas
Recall in last lecture that we defined a (n, d, λ)-expander to be a d-regular n-vertex undirected
graph with second eigenvalue λ. We also defined the edge expansion of a graph G with vertex set
V to be

φ(G) = min
S⊂V

|S|≤n/2

|E(S, S)|
|S|

,

where E(S, S) is the set of edges between a vertex set S and its complement.
The following lemma shows that the eigenvalue formulation of an expander is essentially equiv-

alent to edge expansion.

Lemma 1.1. Let G be a (n, d, λ) expander. Then

φ(G) ≥ (d− λ)/2.

Remark 1.2. In the other, harder, direction, it is possible to show that φ(G) ≤
√

2d(d− λ). For
our purposes of constructing and using expanders, the easier direction shown in this lemma is
enough.

Proof. Let V and E be the vertex and edge sets of G. Let S ⊂ V with |S| ≤ n/2. We will set
up a vector x that is similar to the characteristic vector of S, but perpendicular to

−→
1 . Then by

the Rayleigh coefficient formulation of λ, we have that ‖Ax‖ ≤ λ‖x‖, where A = A(G) is the
adjacency matrix of G.

Accordingly, we define x by

xv =

{
−|S| if v ∈ S
|S| if v ∈ S

,

and you can confirm that
∑

xv = 0 so that x ⊥ −→
1 . Now combining the Raleigh coefficient with

the fact that 〈Ax, x〉 ≤ ‖Ax‖ · ‖x‖ we get

〈Ax, x〉 ≤ λ‖x‖2.

1

Note that (Ax)u =
∑

(u,v)∈E xv, so that as A is symmetric

〈Ax, x〉 =
∑

u

xu

∑
(u,v)∈E

xv

= 2
∑

(u,v)∈E

xuxv

= 2|E(S, S)| ·
(
−|S| · |S|

)
+

(
d|S| − E(S, S)

)
|S|2 +

(
d|S| − E(S, S)

)
|S|2

where in the last two terms we count the number of edges wholly in S and S, respectively: there are
d|S| edge originating in S, minus those that cross over to S, cut in half as we have double counted.
We then simplify by noting that |S| + |S| = n and (|S|2 + 2|S||S| + |S|2 = (|S| + |S|)2 = n2 to
get

= d|S||S|n− |E(S, S)|n2.

Hence as 〈Ax, x〉 ≤ λ‖x‖2 and ‖x‖2 = |S||S|2 + |S||S|2 = |S||S|n, we can say

d|S||S|n− |E(S, S)|n2 ≤ λ|S||S|n

implying

|E(S, S)| ≥ d− λ

n
|S||S|

which shows

|E(S, S)|
|S|

≥ d− λ

2

as |S|/n ≥ 1/2 by our assumption on S.

Suppose we take a walk of length t from a random vertex v in G, as shown in Figure 1, and are
interested in the probability that the entire walk takes place within the set B of size βn. If each
vertex in the walk were picked independently, the probability would be βt. The next lemma shows
that even when the vertices are taken from a walk, in a good expander we are not that far off from
independent vertex choices. This illustrates why expanders are so useful: structures that should
be very dependent, such as walks, look very close to independent. We will not give the proof of
this lemma. We will prove a different (easier) result concerning random walks in expanders in
Lemma 3.1, and later use it when proving the PCP theorem.

Lemma 1.3. Let G be a (n, d, λ)-expander, and B ⊂ V (G) a set of size βn. Then the probability
that a t step walk starting from a vertex v never leaves B is at most√

β2 +

(
λ

d

)2

(1− β2)

t

,

where the probability is taken over the uniform choice of v as well as the steps in the walk.

2

G
B

v

Figure 1: Hitting a set B during a walk in a graph G. Here the walk only intersects B; Lemma 1.3
bounds the probability that the entire walk starts and remains inside B.

Remark 1.4. Note that as λ → 0, the probability approaches βt as our intuition about independent
vertex choices suggests. Also, if β = 1 − ε for ε → 0, then the probability is at most (1 − (1 −
λ2/d2)(1− β2))t/2 ≤ 1−O(tε), or in other words, a t-step random walk has probability Ω(tε) of
hitting a set of density ε, for small ε. This fact will later be appealed to sketch the basic intuition
behind Dinur’s proof.

2 Constructions of Explicit Expanders
In case you are starting to wonder if such marvelous objects as expanders can exist at all, let alone
with interesting parameters, we survey couple of constructions that show that some constant-degree
regular graphs exist with good expansion and they can be described very explicitly.

2.1 The Margulis/Gaber-Galil Expander
We construct an n2 vertex graph G whose vertex set is Zn × Zn, where Zn is the ring of integers
modulo n. Given a vertex v = (x, y), we connect it to the following vertices:

(x + 2y, y) (x, 2x + y)
(x + 2y + 1) (x, 2x + y + 1)

,

where all operations are done modulo n. We also add the edges corresponding to the inverse
transformations. This is then an 8-regular undirected graph, where there may be self loops or
multiedges, depending on n. One can prove that for this graph λ ≤ 5

√
2 < 8.

3

∞

Figure 2: The LPS Expander

2.2 The Lubotzky-Phillips-Sarnak Expander
The construction presented here is much simplified from the original construction. Let V = Zp ∪
{∞}, where p is prime. We view V as a p-element field defined by addition and multiplication
modulo p, where we extend the multiplicative inverse by defining 0−1 to be the special point ∞,
and ∞ + x = ∞ for all x ∈ V . Given any vertex x, connect it to x + 1, x − 1 and x−1. That’s
it! This gives a 3-regular graph with second largest eigenvalue λ ≤ λ0 < 3 for some absolute
constant λ0. The structure of the graph as shown in Figure 2. The graph is a cycle with a matching
between the edges. Note that the extra point with a self-loop that is introduced by the point ∞
can be removed along with 0, and 1 connected to p − 1 without much disturbing the expansion.
Actually since 1 and p−1 also have self loops for their inverses (instead of matching edges, though
this isn’t reflected in the figure!), we can remove them, and simply have a simple graph that is a
cycle on p− 3 nodes with a matching.

3 A Final Expander Lemma
In this section we prove a version of Lemma 1.3 that will be used in the proof of the PCP theorem.
Here the set of interest will be an edge set F ⊂ E, we consider a walk that starts along a particular
edge in F , and consider the chance that the edge used in the tth step is also in F .

Lemma 3.1. Let G be an (n, d, λ)-expander and F ⊂ E(G) = E. Then the probability that a
random walk, starting in the zero-th step from a random edge in F , passes through F on its tth step
is bounded by

|F |
|E|

+

(
λ

d

)t−1

.

4

Proof. To prove this lemma we will use a very useful technique essentially that used for random
walks on Markov chains. Let x be the distribution on the vertices of G for the start of the walk.
That is, xv is the probability that our walk begins at vertex v. Consider the first step in the random
walk. The probability that this ends at a vertex u is the sum, over all edges (v, u), of the probability
that we were on v before this step, times the probability we chose the edge (v, u) out of all the other
edges leaving v. As G is d-regular, v has exactly d edges leaving it, the chance we take the one
heading to u is just 1/d (we will ignore the possibilities of multi-edges—as you will see, the final
expression we actually use takes this into account). Hence if x′ is the distribution on the vertices
of G after the first step,

x′u =
∑

(v,u)∈E

xv/d.

Now let A be the adjacency matrix of G. Then the row Au has ones in exactly the columns
(v, u) where there is an edge (v, u) in G. Hence we can write the above expression compactly as
x′ = Ax/d. Note that in this case, multi-edges are handled correctly, for if there is a multi-edge
of multiplicity m between v and u, the corresponding entry in A will be m, giving the probability
we take that edge from v as m/d as desired. This notation is so convenient we will normalize by
defining Ã = A/d so that simply

x′ = Ãx.

If we take i steps, the distribution we reach is given by Ãix. Let P be the probability we’re
interested in, which is that of traversing an edge of F in the tth step. Suppose w is the vertex we
arrive at after the (t − 1)th step. Let yw be the number of edges of F incident on w, divided by d.
Then P =

∑
w∈V (Ãi−1x)wyw, where x is the initial distribution.

To calculate x, we pick an edge in F , then pick one of the endpoints of that edge to start on.
If v has k edges of F incident on it, we have a k/|F | chance to pick that edge, then a further 1/2
chance to pick v. Now, yw is the same quantity k, but divided by d instead of 2|F |. Hence, we can
write that yw = xw · 2|F |/d. Without calculating x further, we now write

P =
∑
w∈V

(Ãi−1x)wyw

=
∑

(Ãi−1x)wxw ·
2|F |
d

=
2|F |
d
〈Ãi−1x, x〉.

To finish our calculation, we rely on an as-yet unused property of G: its regularity. As each vertex
in G has exactly d neighbors, each row in Ã sums to one. Hence if x‖ is the uniform distribution
on G—x

‖
v = 1/n—then Ãx‖ = x‖. As x is a probability distribution, we can decompose it as

x = x‖ + x⊥ with 〈x‖, x⊥〉 = 0. Then by linearity and the fact just mentioned,

Ãi−1x = Ãi−1x‖ + Ãi−1x⊥

= x‖ + Ãi−1x⊥.

5

Hence,

〈Ãi−1x, x〉 = 〈Ãi−1x‖, x〉+ 〈Ãi−1x⊥, x〉
= 〈x‖, x〉+ 〈Ãi−1x⊥, x〉
= ‖x‖‖2 + 〈Ãi−1x⊥, x〉

=
1

n
+ 〈Ãi−1x⊥, x〉

≤ 1

n
+ ‖Ãi−1x⊥‖ · ‖x‖

≤ 1

n
+

(
λ

d

)i−1

‖x⊥‖ · ‖x‖

≤ 1

n
+

(
λ

d

)i−1

‖x‖2,

as ‖x⊥‖ ≤ ‖x‖. Now notice as the entries of x are positive that ‖x‖2 =
∑

x2
v ≤ max xv

∑
xv =

max xv, as
∑

xv = 1, x being a probability distribution. The maximum xv is achieved when all
edges incident to v are in F , and in that case xv = d/(2|F |), so the calculation above continues

≤ 1

n
+

(
λ

d

)i−1
d

2|F |
.

Hence

P ≤ 2|F |
dn

+

(
λ

d

)i−1

which finishes the proof as |E| = nd/2.

4 Overview of the GAP-3SAT Hardness Proof
In this section we give an overview of the proof of hardness for GAP-3SAT that will occupy us
over the next several lectures. We will actually prove the hardness of a problem that can be seen as
a generalization of graph optimization problems, which has an easy reduction to GAP-3SAT.

Definition 4.1. A constraint graph is given by an alphabet Σ, a graph G = (V, E) and a set of
constraints C = {ce ⊆ Σ× Σ | e ∈ E}. A labeling on G is an assignment σ : V → Σ of elements
from Σ to each vertex of G. A labeling σ satisfies an edge (u, v) ∈ E if

(
σ(u), σ(v)

)
∈ ce (for

each edge a canonical orientation u → v is assumed).

6

The optimization problem for a constraint graph is to find a labeling that maximizes the number
of satisfied edges. The gap problem for constraint graphs with gap parameter ε, 0 < ε ≤ 1, is the
following: given a constraint graph, such that either (i) there is a labeling that satisfies all the
edges, or (ii) every labeling fails to satisfy at least a fraction ε of edges, determine which of the
cases (i) or (ii) holds.

Remark 4.2. Many graph problems can be expressed as a constraint graph problem. For example,
given a graph G to k-color, let Σ be a k-element alphabet, and define the set of constraints C as
{(a, b)}a 6=b. The optimization problem is to find a coloring for G that maximizes the number of
valid edges, those whose endpoints are different colors.

Note that the hardness of the decision problem for constraint graphs implies the hardness of the
gap problem with gap parameter 1/|E|. We will amplify this hardness in a series of stages, where
at each stage we take a constraint graph Gi over alphabet Σ, and produce Gi+1 also over alphabet
Σ, where the number of unsatisfied edges in Gi+1 is at least twice the number in Gi. If the size
of Gi+1 increases polynomially over the size of Gi, this will not be enough, as we will apply this
log |E| times. Hence we must also insure that the size of Gi+1 is at most a constant factor larger
than that of Gi, so that the size of Glog |E| is a polynomial in the size of G1.

Each stage will be split into 4 steps. Let gap(G) denote the minimum fraction of unsatisfied
edges over all labelings of G.

Sparsification (degree-reduce): Gi → G(1), a d-regular graph where gap(G
(1)
i) ≥ β1gap(Gi),

with integer d, β1 > 0 being absolute constants. This step is achieved by placing a (d− 1)-
regular expander at each vertex of Gi with number of vertices of the j’th expander being
equal to the degree of vertex j.

Expanderize: G(1) → G(2), that is a good expander. We can achieve this by unioning G(1) with
an expander, and apply Lemma 3.6 of the previous lecture. This step will also reduce the
gap by an absolute constant factor.

Amplify the Gap: G(2) → G(3) by powering, which will increase gap(G(2)) a lot, more than
making up for the loss of the other steps. This will also increase Σ, where we want the final
graph to be over the same alphabet as the original graph. This step was the main innovation
of Dinur.

Composition (alphabet-reduce): G(3) → Gi+1 by reducing the alphabet back to the original Σ.

In addition, each step will only increase the size of the graph by a constant factor.
It is worth pointing out that expanders are used in each of the first three steps above!

7

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 4: PCP Theorem proof: Degree reduction, Expanderization
Oct. 10, 2005

Lecturer: Ryan O’Donnell Scribe: Vibhor Rastogi and Ryan O’Donnell

1 Constraint graphs and the PCP Theorem

Definition 1.1. A constraint graph(G, C) over alphabetΣ is defined to be an undirected graph
G = (V, E) together with a set of “constraints”C, one per edge. The constraint specified for edge
e ∈ E, call it ce ∈ C, is just a subset ofΣ× Σ.

Note that the graph is allowed to have multi-edges (representing multiple constraints over the same
pair of vertices) and self loops.

Definition 1.2. For a fixedΣ, the algorithmic problemMAX-CG(Σ) is defined as follows: Given
is a constraint graph(G, C); the goal is to find an “assignment”σ : V → Σ such that number of
“satisfied” edges inE — i.e., edgese = (u, v) such that(σ(u), σ(v)) ∈ ce — is maximized.

Note that the input size of an instance ofMAX-CG(Σ) is Θ(m log n), wherem is the number
of edges inG, n is the number of vertices inG, andthe constant hidden in theΘ(·) depends on
|Σ|. This is because the input includes an explicitly written constraint — i.e., a subset ofΣ×Σ —
on each edge.

To study the approximability ofMAX-CG(Σ), we define the gapped version of it:

Definition 1.3. GAP-CG(Σ)c,s (for 0 < s < c ≤ 1) is the following algorithmic decision problem:
Given a constraint graph(G, C),

• output YES if∃ σ such that fraction of edge-constraintsσ satisfies is≥ c;

• output NO if∀ σ the fraction of edge-constraintsσ satisfies is< s;

• otherwise output anything.

Our goal for the next few lectures will be to prove the following theorem. This theorem is
easily seen to imply the PCP Theorem, via the connections we saw in Lecture 2.

Theorem 1.4. (Implies the PCP Theorem.) There is a fixed alphabetΣ0 (the alphabetΣ0 =
{1, 2, . . . , 64} suffices) and a fixed constants0 < 1 (s0 = 1 − 10−6 probably suffices) such that
GAP-CG(Σ0)1,s is NP-hard.

1

2 Outline of the proof that GAP-CG(Σ0)1,s0 is NP-hard

To prove thatGAP-CG(Σ0)1,s0 is NP-hard we must reduce some NP-complete problem to it. We
will reduce from the3-COLOR problem. The3-COLOR can be viewed as a constraint graph
problem: here the alphabet isΣ = {1, 2, 3} and the constraints are all the same, inequality con-
straints. Note that it doesn’t hurt to let the alphabet beΣ0 ⊃ {1, 2, 3}; the constraints can disallow
any vertex-label that is not in{1, 2, 3}. Also note that in the YES case of3-COLOR, all of the
constraints can be simultaneously satisfied, whereas in the NO case of3-COLOR, every coloring
must violate at least one edge; hence we can say that in the NO case, at most a1 − 1/m fraction
of constraints can be simultaneously satisfied. (Herem is the number of edges.) Thus the fact that
3-COLOR is NP-hard can be stated as:

Theorem 2.1.GAP-CG(Σ0)1,1−1/m is NP-hard.

Our goal is to make a polynomial-time reduction from this problem that brings the factor in the
NO case down from1− 1/m to s0 < 1.

To understand how this reduction works, we will keep track of a number of parameters of
constraint graphs:

Definition 2.2 (Parameters of Constraint Graphs).Given a constraint graphG = ((V,E), C)
over alphabetΣ, we define the following parameters:

• size(G) is the totalsize in bits of expressing the constraint graph. This is something like
Θ(m log mpoly(|Σ|). Since|Σ| will always be a “constant”, keeping track of the size mostly
means keeping track of the number of edges,m.

• |Σ| is thealphabet size.

• deg(G) is the maximum vertex degree inG. We will also keep track of whetherG is a regular
graph.

• λ(G) is the size of the second-largest eigenvalue of the graphG. We will only define this
parameter when the graphG is d-regular.

• Most importantly,gap(G), thesatisfiability gapof the constraint graph system, is defined to
be thefraction of constraints that must be violated in any assignment toG. In other words,

gap(G) = 1− max
σ:V→Σ

{fraction of constraintsσ satisfies}
= fraction of constraints violated by the “best” assignmentσ.

gap(G) = 0 means that the constraint graph has a completely valid assignment.

To prove Theorem1.4, our plan is to reduceGAP-CG(Σ0)1,1−1/m (i.e.,3-COLOR) toGAP-CG(Σ0)1,s0.
In other words, we need a polynomial-time algorithm that takes a constraint graphG over alphabet

2

Σ0 andgap equal to either0 (the YES case) or≥ 1/m (the NO case) and outputs a new constraint
graphG′ with parameters

size′ = poly(size), Σ′ = Σ0, gap′ =

{
0 if gap = 0,

≥ 10−6 if gap ≥ 1/m

where here the unprimed parameters denote the parameters of the input constraint graphG and
the primed parameters denote the parameters of the output constraint graphG′. Here also10−6 is
equated with1− s0; i.e., it represents some small positive universal constant. We will accomplish
this reduction by running many small subroutines. Each subroutine is designed to “improve” one
parameter of the current constraint graph at hand. However, each will have “side effects” that hurt
the other parameters. Nevertheless, combining them in the right order will give a reduction that
slowly increases the gap, while keeping the other parameters reasonable.

Specifically, we will design emphfour polynomial-time subroutines which take as input a con-
straint graphG and output a constraint graphG′:

Degree-reduction.
Assumption: the alphabet isΣ0, constant sized.
Main effect:G′ becomes a regular graph, withdeg′ = d0, some universal constant.
Side effects:

• size′ = O(size) (i.e., the size goes up by a constant factor).

• The alphabet does not change.

• If gap = 0 thengap′ = 0. I.e., satisfiable c.g.’s get transformed to satisfiable c.g.’s.

• Otherwise,gap′ ≥ gap/O(1). I.e., the gap goes down by at most a universal constant.

Expanderization.
Assumption:G is regular anddeg is a constant.
Main effect: G′ becomes aconstant degree expander. I.e., G′ is d1-regular for some universal
constantd1, andλ′ < d1.
Side effects: Same side effects as in the Degree-reduction routine.

Gap amplification. This is the critical step and the main novelty in Dinur’s proof.
Assumption:G is an(n, d, λ)-expander, withλ < d universal constants; and, the alphabet isΣ0, a
constant.
Extra parameter: This subroutine is parameterized by a fixed constant we callt. We will later
explicitly say how to choose this constant.
Main effect: The main effect is that in the case wheregap > 0, the gap increases by a factor of
roughlyt. Specifically:

gap′
{

= 0 if gap = 0,

≥ t
O(1)

·min(gap, 1/t) else.

3

In other words, ifG was satisfiable then so isG′; however, ifG was not satisfiable, thenG′ has gap
which is larger by a factor oft — unless this is already bigger than the universal constant1/t, in
which case it just becomes at least1/t.
Side effects:

• size′ = O(size).

• The new alphabetΣ is a much huger constant; something likeΣdt

0 .

• deg′, λ′ may become bad; we don’t care what happens to them.

Composition (alphabet-reduction).
Main effect: The new alphabetΣ′ = Σ0. Side effects:

• size′ = O(size), where the constant depends on the input alphabet size|Σ|. (The dependence
is very bad, in fact; at least exponential.)

• If gap = 0 thengap′ = 0.

• Otherwise,gap′ ≥ gap/O(1).

We claim that if we can show how to do all four of these steps, then this can be used to prove
Theorem1.4and hence the PCP Theorem:

Proof. (of Theorem1.4) We begin from the NP-hard3-COLOR problem,GAP-CG(Σ0)1,1−1/m

(see Theorem2.1). Here we have a constraint graphG over alphabetΣ0 which hasgap = 0 in the
YES case andgap ≥ 1/m in the NO case. Suppose we run all four subroutines in order onG,
producing some new constraint graphG′. What results is thatsize′ = O(size), the alphabet ends
up still beingΣ0, and the newgap′ is either still 0 in the YES case, or it increases by a factor of
t/O(1) in the NO case (assuming this is still less than1/t). Let us select the constantt to be large
enough so that thist/O(1) is at least 2. (By inspecting the proofs of the four subroutines, one can
convince oneself thatt = 106 is more than sufficient.)

Treating these four subroutines as one black box now, we have a polynomial-time algorithm
that doubles the satisfiability gap (in the NO cases, assuming it’s below10−6), keeps the alphabet
equal toΣ0, and only blows up by the size by a constant factor. Our overall reduction is to simply
run this black boxlog m times. Note that the overall size blowup isO(1)log m = poly(m); i.e.,
polynomial. Thus the overall running time is also polynomial. Further, the gap either always stays
0 (in the YES case) or it goes up from1/m to at least the constant10−6 in the NO case. This
completes the proof.

Having outlined the proof, the rest of this lecture and the next four lectures are devoted to
showing how to do the four subroutines.

4

3 Degree-reduction

In this section we show how to do the degree-reduction step. The way to do this step is “well-
known” in the literature; it is sometimes called the “Expander Replacement Lemma” of Papadim-
itriou and Yannakakis.

In this step we will use the fact from Lectures 2 and 3 that there exist universal constants
λ0 < d0 such that(n, d0, λ0)-expanders can be explicitly constructed in timepoly(n).

Given an input constraint graph(G, C), the following transformation gives a new constraint
graph(G′, C ′) achieving our goals:

• Replace each vertexu ∈ V by deg(u) many vertices to get the new vertex setV ′. Denote
the set of new vertices corresponding tou by cloud(u). Each vertex incloud(u) naturally
corresponds with a neighbor ofu from G.

• For each edge(u, v) ∈ E, place an “inter-cloud” edge inE ′ between the associated cloud
vertices. This gives exactly one inter-cloud edge per vertex inV ′. Whatever the old con-
straint on(u, v) was, put the exact same constraint on this inter-cloud edge.

• For eachu ∈ V , put a(deg(u), d0, λ0)-expander oncloud(u). Further, putequalitycon-
straints on these expander edges.

We can observe that in this process each new vertex inV ′ has degree exactly equal tod0 + 1.
Thus we have created a(d0 + 1)-regular graph, as desired. Also number of newly added edges
is equal to

∑
uεV

deg(u)d0

2
= d0

∑
uεV

deg(u)
2

= d0|E|. Hence|E ′| = (d0 + 1)|E|; i.e., the number
of edges only went up by a constant factor. This implies that the overall size went up by only a
constant factor.

Thus it remains to show the properties of the new satisfiability gap. It is easy to see that if
the old gap was 0 then so is the new gap — given a satisfying assignment for the old constraint
graph one can just give each vertex incloud(u) the assignment tou, and this produces a satisfying
assignment in the new graph. Hence we only need to show that in the NO case,gap′ ≥ gap/O(1).

Lemma 3.1. gap′ ≥ gap/O(1).

Proof. Let σ′ : V ′ → Σ0 be a best assignment for(G′, C ′). To relate the fraction of edges inE ′

thatσ′ satisfies back to the gap in the old constraint graph, we define an “extracted” assignment
σ : V → Σ as follows:σ(u) is defined to be the “plurality vote” ofσ′ on cloud(u). By definition,
we know thatσ violates at leastγ|E| constraints in(G, C), where we writeγ = gap for brevity.

Let us defineSu to be the set of vertices incloud(u) on whichσ′ disagrees withσ(u). Suppose
e = (u, v) is one of the at leastγ|E| edges inG that are violated byσ. Let e′ be the corresponding
inter-cloud edge inE ′. The key observation to make is the following: Eitherσ′ violates the edge
e′ or one of the endpoints ofe′ belongs toSu or Sv. Thus we conclude:

γ|E| ≤ (# edges violated byσ′) +
∑
u∈V

|Su|.

5

From this key equation we immediately deduce that either a) the number of edges violated byσ′ is
at least(γ/2)|E|, or b)

∑
u∈V |Su| ≥ (γ/2)|E|. We now consider these two cases.

In case a), we can quickly finish. Sinceσ′ was a best assignment for(G′, C ′), we get

gap′ = # edges violated byσ′) ≥ γ

2
|E| = γ

2(d0 + 1)
|E ′|,

by our earlier calculation|E ′| = (d0 + 1)|E|. Sinced0 is an absolute constant we indeed get
gap′ ≥ gap/O(1), as claimed.

To deal with case b), for anyu ∈ V let Su
a denote the vertices inSu whichσ′ labels bya ∈ Σ0.

By definition ofSu as the non-plurality set, we must surely have|Su
a |/|cloud(u)| ≤ 1/2. Thus by

the fact that the cloud is an expander, we get that there are at leastΩ(1)·|Su
a | edges within the cloud

that come out ofSu
a . (Here theΩ(1) depends ond0 andλ0, but is some explicit positive constant.)

Further,every such edge is violated byσ′, since these edges all have “equality” constraints. Thus
overallσ′ violates at least the following number of edges:

∑
u∈V

∑
a

(Ω(1)/2)|Su
a | (each edge counted twice)

= (1/O(1))
∑
u∈V

|Su|

≥ (1/O(1))(γ/2)|E| (since we are in case b))

= (1/O(1))(γ/2)(|E ′|/(d0 + 1))

= (γ/O(1))|E ′|,

as desired. This completes the proof.

4 Expanderize

In this section we show how to do the Expanderization subroutine. This subroutine is very easy.
Given the constraint graphG with constant degreed, all we need to do is to superimpose an
(n, d0, λ0)-expander. (This may lead to multiple edges.) On each edge from the expander we sim-
ply put a “null” constraint; i.e., a constraint that is always satisfied.

Let us now check what the parameters ofG′ are. The new graph is regular with degreed + d0,
a constant. The new number of edges isn(d + d0)/2; since the old number of edges wasnd/2, we
see that the size of the new constraint graph has only gone up by a constant factor, as desired.

Next, the new constraint graph is indeed a constant degree expander. This is because the new
λ′ is at mostd + λ0 < d + d0, using the Lemma from Lecture 2 about superimposing expanders.

6

Finally, it remains to check the properties of the gap. In the case that the original gap was 0,
the new gap is still 0 — the old satisfying assignment is still a satisfying assignment. In general,
suppose we have any assignmentσ′ for the new constraint graph. Viewing it as an assignment for
the old constraint graph, we see that it must violate at leastgap|E| many old constraints. These
constraints are still violated in the new graph, and the total number of constraints in the new graph
is O(|E|). Hence every assignment in the new graph violates at leastgap/O(1) fraction of the
constraints, as needed.

5 “After Stopping Random Walks” and “Before Stopping Ran-
dom Walks”

For the next lecture’s discussion of the Gap Amplification step, we will need to understand special
kinds of random walks on regular graphs. We will now discuss these random walks and prove a
lemma about their properties. Note that the names “After/Before Stopping Random Walks” are not
standard — we just made them up for this proof!

In both of the following definitions,t ≥ 1 is some parameter.

Definition 5.1. An “After Stopping Random Walk” (A.S.R.W.) in a regular graphG = (V, E),
starting from a random vertex, consists of the following steps:

1. Pick a random vertexa ∈ V to start at.

2. Take a step along a random edge out of the current vertex.

3. Decide to stop with probability1
t
. Otherwise go back to step 2.

4. Name the final vertexb.

Definition 5.2. A “Before Stopping Random Walk” (B.S.R.W.) in a regular graphG = (V, E),
starting from a vertexv, consists of the following steps:

1. Stop with probability1
t
.

2. Take a step along a random edge out of the current vertex.

3. Go to step 1.

Note that A.S.R.W.’s always have length at least 1, whereas B.S.R.W.’s could have length 0. It
is also easy to see that the expected length of an A.S.R.W. is1/t.

A crucial lemma we will need for the Gap Amplification step is the following:

Lemma 5.3. Let k ≥ 1 be a fixed constant and(u, v) be a fixed edge in the regular graphG =
(V, E). Do an A.S.R.W. inG, conditioned on making exactlyk u → v steps. Then:

7

1. The distribution on the final vertexb is the same as if we did a B.S.R.W. starting fromv.

2. The distribution on the initial vertexa is same as if we did an B.S.R.W. starting fromu.

3. a andb are independent.

Proof. Let us start with 1. Suppose that instead of conditioning on making exactlyk u → v steps,
we instead condition on makingat leastk u → v steps. Then the proof of 1 becomes immediate.
This is because conditioned on the fact that we have to stepu → v at leastk times, the instant we
reach the vertexv for thekth time (before we decide to stop or not), there are no more additional
conditional restrictions. Thus the distribution onb, the final vertex, just becomes the same as the
distribution of the final vertex if we were doing a B.S.R.W. fromv.

For an A.S.R.W., letY be a random variable counting the number ofu → v steps. Thus our
previous argument demonstrates that for everyw ∈ V , the probabilityPr[b = w | Y ≥ k] is a
fixed constantPw independent ofk.

We now have the following calculation:

Pw = Pr[b = w | Y ≥ 1]

=
Pr[(b = w) ∧ (Y ≥ 1)]

Pr[Y ≥ 1]

=
Pr[(b = w) ∧ (Y = 1)] + Pr[(b = w) ∧ (Y ≥ 2)]

Pr[Y = 1] + Pr[Y ≥ 2]
.

But we know that
Pr[(b = w) ∧ (Y ≥ 2)]

Pr[Y ≥ 2]
,

which isPr[b = w | Y ≥ 2], is also equal toPw! It thus follows that

Pr[(b = w) ∧ (Y = 1)]

Pr[Y = 1]

is equal toPw; i.e.,Pr[b = w | Y = 1] = Pw. It is now easy to see how to showPr[b = w | Y = `]
is also equal toPw for each` = 2, 3, 4, . . . : just expand out the above calculation` steps and use
induction. This completes the proof of part 1 of the Theorem.

Part 2 of the Theorem follows immediately from the fact that A.S.R.W.’s are completely re-
versible; i.e., one can get the exact same distribution by pickingb at random and walking “back-
wards” toa, stopping with probability1/t after each step.

Finally, Part 3 is easy: Look at the chain of events in the A.S.R.W.:

a = v0, (DON’T STOP),v1, (DON’T STOP), . . . ,vT−1, (DON’T STOP),vT , (STOP)= b.

8

Conditioning on there being exactlyk u → v steps just fixes some middle portion of this chain.
But the chain is memoryless and reversible, soa andb can be generated independently once this
middle part is fixed.

9

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 5: PCP Theorem proof: Gap Amplification
Oct. 12, 2005

Lecturer: Ryan O’Donnell Scribe: Chris Ré and Ryan O’Donnell

1 Overview
Recall from last lecture that we were in the middle of Dinur’s four step process for amplifying the
gap of a constraint graph.

1. Degree-Reduce

2. Expanderize

3. Powering

4. Alphabet-Reduce

Recall that the powering stage is the stage where the gap of the problem increases. We will first
give a sketch of the proof of this stage in order to give some intuition and then return to details for
the remainder of the lecture. The details presented use a slick improvement due to J. Radakrishnan
(unpublished).

2 Powering Stage (Sketch)

2.1 Parameter Effects
In this section, we will be sketchy about some details. Entering the powering stage, we have an
input constraint graph denoted (G, C). G is an a (n, d, λ)-expander, with λ < d universal constants,
and the constraints are over some fixed constant alphabet Σ = Σ0. Our goal is to produce a new
constraint graph (G′, C ′) with a larger gap. We will denote parameters of (G, C) (e.g. size) in the
input without a prime, and constraint graph parameters of (G′, C ′) in the output with a prime (e.g..
size′). Our goal for gap′ is as below:

gap′ =

{
0 if gap = 0,
≥ t

O(1)
·min(gap, 1

t
) otherwise.

As in previous stages we worry about some ancillary parameters of the graph. The effects of this
stage on parameters besides the gap are summarized in Figure 1.

1

Output Params Input Params
size′ = O(size)

|Σ′| ≈ |Σ|dt

deg′, λ′ we don’t care

Figure 1: Effect on parameters

2.2 The beginning of the sketch
Now we begin the sketch in earnest: We need to describe the construction by which we come to the
output graph G′. This construction will have an integer parameter t ≥ 1 in it. For the moment, we
will treat t like a variable but it will eventually be filled in with some universal constant, perhaps
106.

Vertex Set. The output graph G′ will have the same vertex set; i.e. V ′ = V .

The Alphabet. The new alphabet, Σ′, will be given by Σ′ = Σ1+d+d2+···+dt . This alphabet size
is chosen because 1 + d + d2 + · · ·+ dt is an upper bound on the number of vertices at distance at
most t from a given vertex in G, since G is d-regular. As a result, we can identify for each node,
w, in the t-neighborhood of a node v a particular position in the label. We say that the value of this
position corresponds to an “opinion” about the value of w in the old graph. Given an assignment
σ′ : V ′ → Σ′, we write σ′(w)v ∈ Σ for the portion of w’s label that corresponds to the node v; i.e.,
the “opinion” of w about v’s value.

Constraints. The new edges e′ will correspond to paths in G of length about t. (We are being
intentionally fuzzy here.) For such a path from a to b in G, we make an edge on (a, b) in G′. The
constraint we put on the edge is, roughly speaking, “check everything”. For example, in checking
the assignment σ′ : V ′ → Σ′, we can check that for any v on the path that σ′(a)v and σ′(b)v

agree. More importantly, we can also check that for each edge (u, v) on the path, the assignment
(σ′(a)u, σ

′(b)v) is acceptable for the old constraint on (u, v), namely C(u, v). Actually, when we
eventually analyze the gap, we will only worry about such checks.

The Effect on the Gap. Notice that if gap = 0, then in (G′, C ′) one can just use the labelling
that honestly writes down the actual opinions giving the satisfying assignment for (G, C). This
labelling will pass all the constraints in (G′, C ′) (indeed, the constraints were chosen with this in
mind); hence gap′ will still be 0, as desired. When the gap does not equal 0, we hope to make
gap′ ≥ t

O(1)
· gap. (Note that if gap is already at least 1

t
then this might not make sense; hence the

reason for actually writing t
O(1)

· min(gap, 1
t
).) So our approach is to take a best assignment for

(G′, C ′), call it σ′, and extract from it some assignment for the original constraint graph, σ : V →
Σ. This assignment by definition must violate at least a gap fraction of the constraints in (G, C).
We use this fact to get a lower bound on how many constraints σ′ violates in (G′, C ′).

2

2.3 Rough analysis
Recall that given σ′, we write σ′(w)v for the “opinion” of w about v. To define the extracted
assignment σ : V → Σ, given a vertex v ∈ V , we consider the vertices w at distance about t from
it (again, we are intentionally fuzzy here). Each of these has an opinion σ′(w)v about what v’s
label in Σ should be, and for σ(v) we take the plurality of these opinions.

Having defined σ, we know that it violates the constraints on some edges F ⊆ E with
|F |/|E| ≥ gap. Throw away some edges from F if necessary so that |F |/|E| = min(gap, 1

t
) =: γ.

Now we want to show that σ′ has about t times more unsatisfied edge constraints. Consider an
edge e′ in E ′; i.e., a path a → b in G. If this path passes through an edge in F , say (u, v), then
there is a “good chance” that σ′(a)u = σ(u) and σ′(b)v = σ(v). This is because σ(u) and σ(v)
are the plurality opinions about u and v among neighbors at distance around t — and a and b are
such neighbors (fuzzily speaking). Further, if these things happen, then σ′ violates the constraint
on edge e′ = (a, b)!

This discussion leads us to conclude that, roughly speaking,

gap′ = P
e′

[σ′ violates e′] ≥ 1

O(1)
·P

e′
[e′ passes through F].

Finally, we can easily analyze the probability that a random path of length about t hits F , using the
fact that G is an expander:

gap′ ≥ 1

O(1)
·P

e′
[e′ passes through F]

=
1

O(1)
· (1−P

e′
[e′ completely misses F])

=
1

O(1)
·

(
1−

(
1− |F |

|E|

)t
)

(since G is an expander)

≈ 1

O(1)
· (1− (1− tγ)) (since (1− α)t ≈ 1− αt for α ≤ 1/t)

=
t

O(1)
· γ,

as desired.

3 Details for the gap amplification argument
We now explicitly describe the powering step. Recall we start with G = (V, E) an (n, d, λ)-
expander and constraints C over Σ on the edges E. We are building a new constraint graph
(G′, C ′). As mentioned, the new vertex V ′ is the same as the old vertex set, and the new alphabet
is Σ′ = Σ1+d+d2+···+dt , where a label in this set is thought of as giving an “opinion” on what label

3

from Σ should be given to all vertices w within shortest-path graph-distance t in G. We will write
distG(v, w) for this distance between v and w.

To define the new edge set and constraints, we will go through the notion of a verifier; the
verifier will be a randomized process for generating an edge (a, b) for E ′ along with a constraint to
go with it, a subset of Σ′ × Σ′. Note that this does not exactly give a new proper constraint graph.
There are two reasons for this: First, our verifier will actually give a probability distribution over
all possible edges; i.e., all of V × V . Second, a probability distribution over edges/constraints can
really only be viewed as a weighted constraint graph, where the weight associated to an edge is
equal (or proportional) to the probability the verifier chooses that edge. In fact, we actually have to
view the verifier as generating a weighted constraint graph with multiple parallel edges; the reason
is that the verifier may produce the same pair of endpoints (a, b) in different ways with different
constraints when it does its random test. So once we describe our verifier, what we’ve really de-
scribed a weighted constraint graph on the complete graph, with some multiple parallel edges.

This is not so good, since we want an unweighted constraint graph (we don’t mind multiple
parallel edges) and since we get at least n2 edges (n = |V |), rather than O(n); i.e., the size has
gone up way too much. Nevertheless, we will disregard these two problems for the duration of this
lecture and just try to do the gap analysis for the verifier we present. In the next lecture we will
show how to slightly change the verifier so that we get a weighted constraint graph with constant
degree (the constant depends on t, d, and |Σ|). Having fixed this problem, we can also easily
get an equivalent unweighted constraint graph by replacing weighted edges by (constantly many)
multiple parallel unweighted edges.

3.1 The verifier
We now describe our randomized verifier by describing how it picks a random edge e′ = (a, b) ∈
E ′ and what test it performs on the resulting labelling (σ′(a), σ′(b)) ∈ Σ′ × Σ′. First, the verifier
does an After-Stopping Random Walk (A.S.R.W. — see Lecture 4) starting from a random vertex
a and ending at some random vertex b. This walk may be of any finite length. (Note: it ends after
finitely many steps with probability 1. Also note: it can start and end at a and b in multiple different
ways.) Once the verifier completes its walk, it does the following test:

For every step u → v it took, if distG(u, a) ≤ t and distG(v, b) ≤ t and if (σ′(a)u, σ
′(b)v)

is a violation of the edge-constraint C(u, v) from the old constraint graph, then V rejects. If the
verifier doesn’t reject for any of these u → v steps, then it accepts.

Note: the verifier may take a step u → v more than once on its path; if so, it will be equally
satisfied or unsatisfied about each of these steps. The reason is that it doesn’t matter when the ver-
ifier takes the u → v step; u is either within distance t of a or it isn’t, and the same goes for v and b.

Having defined our verifier, we now want to analyze its satisfiability gap. To that end, let σ′

be the best assignment σ′ : V ′ → Σ′ for this verifier. We want to “extract” from it an assignment
σ : V → Σ. Here is how we do this:

4

Definition 3.1. To define σ(v): Consider the probability distribution on vertices w ∈ V gotten as
follows:

• Do a Before-Stopping Random Walk (B.S.R.W. — see Lecture 4) starting from v, ending on
w.

• Condition on this walk stopping within t steps.

Since any walk from v of at most t steps ends at a vertex that is within distance t of v in G, the
above gives a probability distribution on vertices w that have opinions on v. Thus we get a well-
defined associated probability distribution L on letters of Σ — namely, the distribution σ′(w)v.
Finally, given this distribution, σ(v) is defined to be the letter in Σ with highest probability under
distribution L. Ties can be broken by, say, lexicographical order on Σ.

Note: this is not a random assignment; given σ′, the assignment σ is fixed. Note also that this
definition is a completely abstract notion we make for analysis purposes. Our overarching poly-
time deterministic reduction does not need to do or understand this definition.

With σ defined, as in class we let F ⊂ E be the subset of edges from the old constraint graph it
violates. (And, we throw away some edges from F if necessary so that |F |/|E| = min(gap, 1/t).)
Given this F , we introduce the notion of a faulty step within the verifier’s walk:

Definition 3.2. Within the verifier’s A.S.R.W., we say a particular step u → v is faulty if:

• (u, v) ∈ F ;

• distG(u, a) ≤ t and σ′(a)u = σ(u);

• distG(v, b) ≤ t and σ′(b)v = σ(v);

Define also N to be the random variable counting the number of faulty steps the verifier makes in
its A.S.R.W.

The key observation about this definition is that whenever N > 0, the verifier rejects. This
is by definition of the verifier’s actions. (Note that the verifier may reject in other cases too. For
instance, it may reject because it made a step u → v where u is within distance t of a, v is within
distance t of b, and (σ′(a)u, σ

′(b)v) is a bad assignment for C(u, v); however, this can happen with-
out σ′(a)u equalling σ(u) or σ′(b)v equalling σ(v), which is required for faultiness.) Note also that
if a verifier makes the step u → v many times, then either all of them are faulty or none is faulty.

We would like to show that P[N > 0] — and hence gap′ — is large. We can do this by using
the second moment method, a basic tool from probability:

Lemma 3.3. (Second Moment Method) If X is a nonnegative random variable then

P[X > 0] ≥ E[X]2

E[X2]
.

5

Proof.

E[X] = E[X · 1[X > 0]] ≤
√

E[X2]
√

E[(1[X > 0])2] =
√

E[X2]
√

P[X > 0],

where we used Cauchy-Schwarz in the the inequality. Rearrangement completes the proof.

Thus the first thing we should show is that E[N] is large. Having done this, we will see the
upper bound on E[N2] and also the fix that truncates the verifier’s walks in the next lecture.

Lemma 3.4. E[N] ≥ 1
4|Σ|2 · t

|F |
|E| .

Proof. By linearity of expectation, it is enough to argue that for any particular edge (u, v) ∈ F ,
the expected number of faulty u → v steps is at least 1

8|Σ|2 ·
t

|E| . So for (u, v) ∈ F ,

E[# faulty u → v steps]

=
∑
k≥1

E[# faulty u → v steps | exactly k u → v steps] ·P[exactly k u → v steps]. (1)

As we said before, for a given random path, either all u → v steps are faulty or none is. So we
have the relation

E[# faulty u → v steps | exactly k u → v steps] = k·P[u → v steps are faulty | exactly k u → v steps].

We will argue that

P[u → v steps are faulty | exactly k u → v steps] ≥ 1

4|Σ|2
. (2)

Hence we can lower-bound (1) by∑
k≥1

k · 1

4|Σ|2
·P[exactly k u → v steps] =

1

4|Σ|2
· E[number of u → v steps] =

1

4|Σ|2
· t

2|E|
,

where the last step follows from: a) the expected total number of steps is easily seen to be t; b)
each step is equally likely to be any of the 2|E| possibilities (this uses the fact that G is regular);
c) linearity of expectation.

It now remains to prove (2). So suppose we condition the verifier’s walk on making exactly k
u → v steps. Since (u, v) is in F we have that u → v steps are faulty for this walk iff:

(i) a is within distance t of u in the graph G and σ′(a)u = σ(u);

(ii) b is within distance t of v in the graph G and σ′(b)v = σ(v).

6

We now invoke the lemma from Lecture 4 which says that conditioned on the walk taking exactly k
u → v steps, a is distributed as a B.S.R.W. from u, b is distributed as a B.S.R.W. from v, and a and
b are independent. Our task is to show that P[(i) and (ii)] ≥ 1

4|Σ|2 ; since a and b are independent,
this probability is equal to P[(i)] · P[(ii)]. We will show that P[(ii)] ≥ 1

2|Σ| and the proof for (i) is
the same; thus this will complete the proof.

So finally, we must prove P[(ii)] = P[dist(b, v) ≤ t and σ′(b)v = σ(v)] ≥ 1
2|Σ| . By the lemma,

if we let w denote a random vertex generated by taking a B.S.R.W. starting at v, then

P[dist(b, v) ≤ t and σ′(b)v = σ(v)] = P[dist(w, v) ≤ t and σ′(w)v = σ(v)]. (3)

Now consider the B.S.R.W. that generated w and condition on it having taken at most t steps. So

(3) = P[dist(w, v) ≤ t and σ′(w)v = σ(v) | at most t steps taken to generate w]×
×P[at most t steps taken to generate w]

= P[σ′(w)v = σ(v) | at most t steps taken to generate w]×P[at most t steps taken to generate w]

≥ (1/2) ·P[σ′(w)v = σ(v) | at most t steps taken to generate w], (4)

where the last step is because a B.R.S.W. stop within t steps with probability at least 1−(1−1/t)t ≥
1/2. But now, finally, if we look at the probability in (4), we see that the distribution on w is
precisely the distribution used in defining σ(v) — specifically, that generated by taking a B.S.R.W.
from v and conditioning on stopping within t steps. Hence the probability in (4) is actually that the
most common (plurality) event occurs for a Σ-valued random variable; this is clearly at least 1

|Σ| ,
so we are done.

7

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 6: Powering Completed, Intro to Composition
Oct. 17, 2005

Lecturer: Ryan O’Donnell and Venkat Guruswami Scribe: Anand Ganesh

1 Powering Completed
In the previous lecture we began the Powering step; this step takes (G, C), a constraint graph on
an (n, d, λ)-expander over a constant-sized alphabet Σ, and outputs (G′, C ′). The properties of the
new constraint graph are that size′ = O(size), the alphabet size remains a constant (albeit a much
much larger one), gap = 0 ⇒ gap′ = 0, and the main property:

gap′ ≥ t

O(1)
·min(gap, 1/t).

Here t is a fixed constant parameter. The transformation is based on the idea of constructing G′

from G by having edges in G′ correspond to walks of length about t in the original graph.
Let us go over the construction of G′ in more detail. As we said in the previous lecture, the

new alphabet is Σ′ = Σ1+d+d2+d3...+dt . The new edge set E ′ and constraint set C ′ are defined as
follows:

• E ′: Pick a random vertex a. Do an A.S.R.W. from a, ending on b. This generates a weighted
edge e′ = (a, b). As we noted, this seems like it might be a problem, since we get a) weighted
edges, and b) too many edges. We discuss this shortly.

• C′: Here is the test that is then applied to the labelling σ′ : V ′ → Σ′:

– If the number of steps in the A.S.R.W. was greater than B := (10ln|Σ|)t, then accept.

– Otherwise, for each step u → v along the path, if distG(a, u) ≤ t and distG(b, v) ≤ t
(i.e. the vertices are close enough that there will be opinions), and if (σ′(a)u, σ

′(b)v) is
violating for the old constraint on (u, v) ∈ E, reject

Fixing the problems: Given this construction of a weighted constraint graph (with multiple
edges and edges between all possible pairs!), throw away all paths e′ ∈ E ′ corresponding to walks
of length greater than B. Since these all had always-satisfied constraints, this can only cause the
gap to go up. Having done this, we get:

deg(G) ≤ 1 + d + d2 + d3... + dB = constant
size′ ≤ O(size).

1

The only problem left is that the edges still have weights, and we want unweighted constraint
graphs. However note that all the weights are simply rational numbers depending only on the uni-
versal constants d and t; hence we can replace them appropriately with parallel unweighted edges.
Thus we have fixed the annoying details associated with our randomized way of describing the
edges E ′ and can proceed to analyze the gap.

We now need to show that ∀σ′ : V ′ → Σ′,

Pr[test rejects σ′] ≥ t

O(1)
min(gap,

1

t
).

So let σ′ be the “best” assignment for our C ′. We extract an assignment σ : V → Σ from it based
on the plurality vote method analyzed in the previous lecture. Let F ⊂ E be the set of edges in G
violated by σ; we know that |F |/|E| ≥ gap. Throw away some edges from F is necessary so that
|F |/|E| = min(gap, 1/t).

We will now recall the notion of a “faulty step” from the previous lecture; however we will also
introduce the notion of a “faulty* step”, which is needed to analyze our B-truncated verifier.

Definition 1.1. Let e′ : a → b be a random path as chosen by our verifier. Step u → v is faulty if
the following hold:

• (u, v) ∈ F ,

• distG(a, u) ≤ t and σ′(a)u = σ(u),

• distG(b, v) ≤ t and σ′(b)v = σ(v).

We further define a step to be faulty* if

• the step is faulty,

• the number of steps in the overall a → b walk was at most B.

Let us also define some random variables based on the verifier’s A.S.R.W.:

Definition 1.2.

• N = number of faulty steps.

• N∗ = number of faulty* steps.

• S = total number of steps.

• NF = number of steps that were in F .

Note that by the definitions we have

N∗ = N · 1{S≤B},

and
N∗ ≤ N ≤ NF .

2

1.1 Analysis
The key point of the definition of faulty* steps is that whenever the verifier picks a random walk
that has a faulty* step (i.e., whenever N∗ > 0), the verifier rejects σ′. (Note that the verifier may
still reject even if it has no faulty* steps.) Thus we have

gap′ = Pr[test rejects σ′] ≥ Pr[N∗ > 0] ≥ E[N∗]2

E[(N∗)2]
,

where we used the Second-Moment Method in the last step as discussed in the last lecture. To
complete the proof we need to show that gap′ ≥ t

O(1)
· |F ||E| . Hence we are done if we can show the

following two lemmas:

Lemma 1.3. E[N∗] ≥ t
8|Σ|2 ·

|F |
|E|

Lemma 1.4. E[(N∗)2] ≤ O(1) · t · |F ||E|

Proof. (Lemma 1.3.) To prove the lower bound on E[N∗] we use the lemma from the last lecture
that said E[N] ≥ t

4|Σ|2 ·
|F |
|E| . We have

E[N∗] = E[N · 1{S≤B}]

= E[N · (1− 1{S>B)}]

= E[N]− E[N · 1{S>B}]

≥ t

4|Σ|2
· |F |
|E|

− E[N · 1{S>B}],

using the earlier lemma. Now,

E[N · 1{S>B}] = Pr[S > B] · E[N | S > B]

= (1− 1/t)B · E[N | S > B]

≥ exp(−B/t) · E[NF | S > B]

= exp(−B/t) · E[S | S > B] · |F |
|E|

= exp(−B/t) · (B + t) · |F |
|E|

≥ 1

|Σ|10
· (20 ln |Σ| · t) · |F |

|E|
(by definition of B)

≥ t

8|Σ|2
· |F |
|E|

,

since (20 ln |Σ|)/|Σ|10 ≤ 1/(8|Σ|2). Combining the above two calculations completes the proof.

3

Proof. (Lemma 1.4) The proof of this lemma is the only place where we use the fact that G is an
(n, d, λ)-expander. In fact, this is all we use — that in a length L random walk on an expander,
the number of times you hit a fixed set of edges is about what you would get if you just picked L
random edges. In particular, we start with the trivial upper bound

E[(N∗)2] ≤ E[(NF)2].

Let us express Nf =
∑∞

i=1 χi, where χi = 1[ith step is in F]. We have:

E[(NF)2] =
∞∑

i,j=1

E[χi · χj]

≤ 2
∞∑
i=1

Pr[χi = 1] ·
∑
j≥i

Pr[χj = 1 | χi = 1] (*)

Now Pr[χj = 1 | χi = 1] is 1 if j = i; otherwise it equals

Pr[the walk takes at least j − i more steps]
× Pr[a walk, starting from a random F endpoint, takes its (j − i)th step in F].

The first quantity here is just (1− 1/t)j−i. The second quantity, from Lecture 3’s expander lemma
on this subject, is at most |F |/|E|+ (λ/d)j−i−1. Now substituting this into (*), we get:

E[(N∗)2] ≤ 2
∞∑
i=1

Pr[χi = 1] ·

(
1 +

∞∑
`=1

(1− 1/t)`

(
|F |
|E|

+ (λ/d)`−1

))

2
∞∑
i=1

Pr[χi = 1] ·

(
1 +

∞∑
`=1

(1− 1/t)` · |F |
|E|

+
∞∑

`=1

(λ/d)`−1

)

≤ 2
∞∑
i=1

Pr[χi = 1] ·
(

1 + (t− 1) · |F |
|E|

+ O(1)

)
(since λ < d are consts)

≤ O(1) ·
∞∑
i=1

Pr[χi = 1] (since |F |/|E| ≤ 1/t)

= O(1) · E[NF]

= O(1) · t |F |
|E|

,

as claimed.

2 Introduction to Composition
We are now at stage 4 of the proof of the PCP theorem called Alphabet Reduction or Composition.
Given a constraint graph with a large alphabet size, the problem is to reduce the alphabet size

4

(Σdt → Σ0 where |Σ0| is an absolute constant, say 64) without adversely affecting other parameters
like the gap. In simplified terms, the composition step may be thought of as a recursive step (with
some extra features) within the larger PCP reduction as we will describe below.

Recall that the PCP may be cast in the following form. It is a reduction P such that maps a
Boolean constraint (a 3SAT formula, or a Boolean circuit) Φ into a constraint graph (G, C) over a
fixed alphabet Σ0 such that

P : Φ → (G, C) such that
Φ satisfiable =⇒ (G, C) satisfiable

Φ not satisfiable =⇒ gap(G) > ε i.e. < 1− ε of the constraints in C are satisfiable

Consider a constraint graph H = Gt obtained after the powering step. Let ce be the constraint
on edge e. This is a binary constraint over a large alphabet (like Σdt). We can express it as a
Boolean constraint Φce over several Boolean variables (using some standard encoding), and apply
a PCP reduction as above, call it Pe, to this constraint to get a new set of binary constraints over the
alphabet Σ0. Thus, we can reduce the alphabet size, and if the original ce was not satisfied at least
an ε fraction of the newly produced constraints over Σ0 must be unsatisfied by any assignment.
Therefore, one also expect that the new gap is at least ε · gap(H), and the alphabet is now Σ0.

Of course, our whole goal is to construct a PCP reduction, so how can we use a PCP reduction
recursively without falling prey to a circular argument? The key is that we will apply this “inner”
PCP reduction only to constraints of constant size and thus the reduction can be arbitrarily inef-
ficient (and hence perhaps easier to construct). Therefore, the hope would be to construct from
scratch a highly inefficient PCP reduction, and use it as above.

Consistency. However, there is a subtle issue which makes the above recursion not as straight-
forward as we suggested. Suppose e = (u, v) and e′ = (v, w) are two edges in the constraint graph
H that share a vertex v. The reductions Pe and Pe′ ensure that the constraints ce and ce′ are both
individually satisfiable. However, we need to ensure that the constraints in H are all satisfied by
a single, common assignment to the variables. In particular, this means that we need to check not
only that ce and ce′ are satisfiable, but that they are satisfied by assignments which are consistent
on the shared variable v. This consistency will be achieved by imposing additional requirements
on the PCP reduction using an entity called the Assignment Tester.

Roughly speaking, an assignment tester checks that a constraint is satisfied by a particular
assignment to its variables. So in the above recursive appraoch, we assume that we are given an
assignment σ(v) to each of the variables in H , and the assignment tester corresponding to edge
e = (u, v) must check that (σ(u), σ(v)) satisfies the constraint ce. Now consider the case where
(σ(u), σ(v)) differs from a satisfying assignment to ce in just one bit. Then, most constraints of the
assignement tester may accept, whereas we want a constant fraction of them to reject. Thus this is
too stringent a task to impose on the assignment tester.

We relax the requirement so that the assignment tester must check proximity of the claimed
assignment to a satisfying assignment of the constraint in the Hamming metric. As we will see

5

in the next two lectures, this task becomes feasible. But let us see how this relaxation affects the
composition idea.

Consider edges e = (u, v) and e = (v, w) sharing a vertex v. Given vertex assignments for
vertices u, v, w, Pe checks that σ(v) is close to x1v that (together with some assignment to u)
satisfies ce. Pe′ checks that σ(v) is close to x2v thatsatisfies ce′ . We want to enforce consistency
on the label to v, i.e., x1v = x2v — this is the goal. In other words, for any assignment σ(v)
there should be a unique legal, satisfying assignment that is very close to σ(v). This condition
can be met if and only if the legal assignments to the vertices are all pairwise far apart from each
other, or in other words they form an error-correcting code. Hence, codes enter naturally into this
framework.

6

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 7: Composition and Linearity Testing
Oct. 17, 2005

Lecturer: Venkat Guruswami Scribe: Anand Ganesh & Venkat Guruswami

Last Class

- End Gap Amplification

- High level view of Composition

Today

- Formal Definition of AT = Assignment Tester

- Composition Theorem

1 Composition
We saw informally in the previous lecture that the composition step was recursion with a twist: the
“inner” the verifier needed to perform the following “assignment testing” task: Given an assign-
ment a to the variables of a constraint Φ, check if a is close to a satisfying assignment of Φ. The
formal definition follows. We say that two strings x, y are δ-far from each other if they differ on at
least a fraction δ of coordinates.

Definition 1.1 (Assignment Tester). A q-query Assignment Tester AT (γ > 0,Σ0) is a reduction
algorithm P whose input is a Boolean circuit Φ over Boolean variables X and P outputs a system
of constraints Ψ over X and set Y of auxiliary variables such that

• Variables in Y take values in Σ0

• Each ψ ∈ Ψ depends on at most q variables in X ∪ Y

• ∀a : X → {0, 1}

- If φ(a) = 1, then ∃b : Y → Σ0 such that a ∪ b satisfies all ψ ∈ Ψ

- If assignment ’a’ is δ-far from every a’ such that φ(a′) = 1 then ∀b : Y → Σ0, atleast
γ0δ fraction ψ ∈ Ψ are violated by a ∪ b

We first observe that the above definition is stronger than a regular PCP reduction:

• Φ satisfiable =⇒ ∃a ∪ b that satisfy all constraints in Ψ

1

• Φ not satisfiable =⇒ every assignment a : X → {0, 1} is 1-far from any satifsying
assignment (since no satisfying assignment exists!), and hence for every b : Y → Σ0, a ∪ b
violates Ω(1) fraction of constraints in Ψ. In particular, every assignment a∪b to the variables
of Ψ violates Ω(1) fraction of the constraints, like in a PCP reduction.

Theorem 1.2 (Composition Theorem). Assume existence of 2-query Assignment tester P (γ >
0,Σ0). Then ∃β > 0 (dependent only on P and poly(size(G))) such that any constraint graph
(G, C)Σ can transformed in time polynomial in the size of G into a constraint graph (G′, C ′)Σ0

denoted by G ◦ P such that

• size(G′) ≤ O(1)size(G)

• gap(G) = 0 =⇒ gap(G′) = 0

• gap(G′) ≥ β · gap(G)

Proof. The basic idea is to apply the AT P to each of the constraints c ∈ C and then define the
new constraint graph G′ based on the output of P . Since the AT expects as input a constraint over
Boolean variables, we need to first express the constraints of G with Boolean inputs. For this, we
encode the elements of Σ as a binary string.

The trivial encoding uses log(|Σ|) bits. Instead we will use an error correcting code e : Σ →
{0, 1}l where l = O(log |Σ|) of relative distance ρ = 1/4, i.e., with the following property:

∀x, y, x 6= y =⇒ e(x) is ρ-far from e(y)

i.e. x 6= y =⇒ ∆(e(x), e(y)) ≥ ρ · l

Let [u] denote the block of Boolean variables supposed to represent the bits of the encoding of
u’s label. For a constraint c ∈ C on variables u, v of G, define the constraint c̃ on the 2l Boolean
variables [u] ∪ [v] as follows:

c̃(a, b) = 1 iff ∃ α ∈ Σ and α′ ∈ Σ such that the following hold:
e(α) = a

e(α′) = b

c(α, α′) = 1.

Let c̃ : {0, 1}2l → {0, 1} be regarded as a Boolean circuit and fed to a 2-query AT. The output is
a list of constraints Ψc which can regarded as a constraint graph over Σ0, call it (Gc = (Vc, Ec), Cc)
(where [u] ∪ [v] ⊂ Vc), with the two variables in each constraint taking the place of vertices in the
constraint graph. To get the new constraint graph G′, we will paste together such constraint graphs
Gc obtained by applying the 2-query AT to each of the constraints of the original constraint graph.

Formally, the new constraint graph is (G′ = (V ′, E ′), C ′) over Σ0 where

• V ′ = ∪c∈CVc

• E ′ = ∪c∈CEc

2

• C′ = ∪c∈CCc
We will assume wlog that |Ec| is the same for every c ∈ C (this can be achieved by duplicating
edges if necessary).

We will now prove that the graph G′ obtained by the reduction above satisfies the requirements
of the Composition Theorem (??). Clearly, since the size of G′ is at most a constant times larger
than that ofG, since each edge inG is replaced by the output of the assignment tester on a constant-
sized constraint, and thus by a graph of constant (depending on |Σ|) size. Also, G′ can be produced
in time polynomial in the size of G.

The claim that gap(G′) = 0 when gap(G) = 0 is also obvious – beginning with a satisfying
assignment σ : V → Σ, we can label the variables in [u] for each u ∈ V with e(σ(u)), and
label the auxiliary variables introduced by the assignment testers P in a manner that satisfies all
the constraints (as guaranteed the property of the assignment tester when the input assignment
satisfies the constraint).

It remains to prove that gap(G′) ≥ β · gap(G) for some β > 0 depending only on the AT.
Let σ′ : V ′ → Σ0 be an arbitrary assignment. We want to show that σ′ violates at leats a

fraction β · gap(G) of the constraints in C ′. First we extract an assignment σ : V → Σ from σ′ as
follows: σ(u) = arg mina ∆(σ′([u]), e(a)), i.e., we pick the closest codeword to the label to the
block of variables (here we assume without loss of generality that σ′ assigns values in {0, 1} to
variables in [u] for all u ∈ V).

We know that σ violates at a fraction gap(G) of constraints in C. Let c = ce ∈ C be such a
violated constraint where e = (u, v). We will prove that at least a γ ·ρ/4 fraction of the constraints
of Gc are violated by σ′. Since the edge sets Ec all have the same size for various c ∈ C, it
follows that σ′ violates at least a fraction γ · ρ/4gap(G) of constraints of G′. This will prove the
composition theorem with the choice β = γ · ρ/4.

By the property of the assignment tester P , to prove at least γ · ρ/4 of the constraints of Gc are
violated by σ′, it suffices to prove the following.

Claim: σ′([u] ∪ [v]) is at least ρ/4-far from any satisfying assignment to c̃.
Proof of Claim: Let (σ′′([u]), σ′′([v])) be a satisfying assignment for c̃ that is closest to σ′([u] ∪
[v]). Any satisfying assignment to c̃ must consist of codewords of the error-correcting code e.
Therefore, let σ′′([u]) = e(a) amd σ′′([v]) = e(b). Moreover, c(a, b) = 1. Since σ violates c, we
have c(σ(u), σ(v)) = 0. It follows that either a 6= σ(u) or b 6= σ(v), let us say the former for
definiteness. We have

ρ ≤ ∆(e(a), e(σ(u))) ≤ ∆(e(a), σ′([u])) + ∆(σ′([u]), e(σ(u))) ≤ 2∆(e(a), σ′([u]))

where the last step follows since e(σ(u)) is the codeword closest to σ′([u]). Recalling, e(a) =
σ′′([u]), we find that at least a ρ/2 fraction of the positions σ′([u]) must be changed to obtain
a satisfying assignment to c̃. It follows that σ′([u] ∪ [v]) is at least ρ/4-far from any satisfying
assignment to c̃.

This completes the proof of the claim, and hence also that of Theorem 1.2.

The composition theorem needed a 2-query AT. We now show that bringing down the number
of queries to 2 is easy once we have a q-query AT for some constant q.

3

Lemma 1.3. Given a q-query Assignment Tester AT over Σ0 = {0, 1}, γ0 > 0, it is possible to
construct a 2-query AT over alphabet Σ′

0 = {0, 1}q and γ′0 = γ0
q

.

Proof. Let the q-query Assignment Tester AT be on Boolean variables X ∪ Y (where Y is the set
of auxiliary variables), with set of constraints Ψ. Define 2-query AT as follows. The auxiliary
variables are Y ∪ Z where Z = {zψ|ψ ∈ Ψ} is a set of variables over the alphabet Σ′

0 = {0, 1}q,
and the set of constraints Ψ′ include for each ψ ∈ Ψ a set of q constraints on two variables:
(zψ, v1), (zψ, v2), ...(zψ, vq) where v1, v2, . . . , vq are the variables on which ψ depends (if ψ depends
on fewer than q variables, we just repeat one of them enough times to make the number q). The
constraint (zψ, vi) is satisfied by (a, b) a satisfies ψ and a is consistent with b on the value given to
vi.

Clearly, if all constraints in Ψ can be saisfied by an assignment toX∪Y , then it can be extended
in the obvious way to Z to satisfy all the new constraints. Also, if a : X → {0, 1} is δ-far from
satisfying the input circuit Φ to the AT, then for every b : Y → {0, 1}, at least γ0δ fraction of ψ ∈ Ψ
are violated. For each such ψ, for any assignment c : Z → {0, 1}q, at least one of the q constraints
that involve zψ must reject. Thus, at least a fraction γ0δ

q
of the new constraints reject.

Later on, we will give a 6-query AT over the Boolean alphabet. By the above, this also implies
a 2-query AT over the alphabet {1, 2, . . . , 64}.

2 Linearity Testing
We will now take a break from PCPs and do a self-contained interlude on “linearity testing”.
Consider a function f : {0, 1}n → {0, 1} as a table of values, the question we now consider is ”Is
f linear ?”. Such questions are part of a larger body of research called property testing. First, we
define what we mean by a linear function.

Definition 2.1. (Linear functions) A function f : {0, 1}n → {0, 1} is linear if ∃S ⊂ {1, 2, ...n}
such that f(x) =

⊕
i∈S xi. Or equivalently, f is linear if there exists a ∈ {0, 1}n such that

f(x) =
⊕n

i=1 aixi.

Fact 2.2. The following two statements are equivalent:

• f is linear

• ∀x, y : f(x+ y) = f(x) + f(y)

For S ⊂ {1, 2, ...n}, define LS : {0, 1}n → {0, 1} as LS(x) =
⊕

i∈S xi. Say Ls(X) =∑
i∈S Xi. Given access to the truth table of a function f , linearity testing tries to distinguish

between the following cases, using very few probes into the truth table of f :

• f = LS for some S

• f is “far-off” from LS for every S

4

A randomized procedure for Linearity Testing uses 2.2 above. Instead of testing whether f(x+
y) = f(x) + f(y) for every pair x, y, we pick one pair (x, y) at random and apply the following
test: Is f(x+ y) = f(x) + f(y)? Thus we look at the value of f on only 3 places. We will explore
actual guarantees that this test provides in the next lecture, and go on to connect this with the proof
of the PCP theorem.

5

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 8: Linearity and Assignment Testing
26 October 2005

Lecturer: Venkat Guruswami Scribe: Paul Pham & Venkat Guruswami

1 Recap
In the last class, we covered the Composition Theorem except for the O(1)-query assignment
tester (AT). Today we will develop some machinery relating to linearity testing to be used in the
construction of such an AT. This can be treated as a self-contained lecture on linearity testing and
the necessary Fourier analysis.

2 Linearity Testing
We work in an n-dimensional binary vector space {0, 1}n with inner product x · y =

∑n
i=1 xiyi de-

fined as usual, where the summation is done modulo 2 (in other words, it is the binary ⊕ operator).
The binary⊕ operator will denote bitwise XOR on two vectors. The linear functions on {0, 1}n are
of the form L(x) = a ·x for some a ∈ {0, 1}n. There are 2n such functions. If S ⊆ {1, 2, . . . , n} is
the set {i : S 3 i}, then clearly L(x) =

∑
i∈S xi (again, the summation is in the field {0, 1}). We

will use such subsets to index linear functions — the linear function LS corresponding to a subset
S ⊂ {1, 2, . . . , n} is defined as

LS(x) =
∑
i∈S

xi

Definition 2.1 (linear function). A function f : {0, 1}n → {0, 1} is linear if

∀x,y∈{0,1}n : f(x+ y) = f(x) + f(y) (1)

(where x+ y denotes coordinatewise addition mod 2).
Alternatively, a function f is linear if it is equal to LS for some S ⊂ {1, 2, . . . , n}.

The goal of linearity testing is then: given f : {0, 1}n → {0, 1} as a table of 2n values, check
whether f is linear using just a few probes into the table f . Clearly, we cannot check that f is
exactly linear without looking at the entire table, so we will aim to check whether f is close to a
linear function. A natural test is the Blum-Luby-Rubinfeld (BLR) test where we check the above
condition (1 for a single triple (x, y, x+y) with x, y chosen randomly and independently. Formally
the BLR test proceeds as follows:

1. Pick x, y ∈ {0, 1}n uniformly and independently at random.

1

2. If f(x+ y) = f(x) + f(y) accept, otherwise reject.

We can describe the distance/closeness between two functions as follows.

Definition 2.2. We say two functions f and g are δ-far if they differ in at least a fraction δ of places,
0 ≤ δ ≤ 1, i.e.,

Pr
x∈{0,1}n

[f(x) 6= g(x)] ≥ δ

We say two functions f and g are δ-close if they differ in at most a fraction δ of places, 0 ≤ δ ≤ 1,
i.e.,

Pr
x∈{0,1}n

[f(x) 6= g(x)] ≤ δ

The completeness of the above test is obvious.

Theorem 2.3 (BLR Completeness). If f is linear, the BLR test accepts with probability 1.

In the rest of this lecture we will show the following on the efficacy of the test in detecting the
non-linearity of f as a function of the distance of f from linearity.

Theorem 2.4 (BLR Soundness). If f is δ-far from every linear function then the BLR test rejects
with probability at least δ.

3 Notation Change
We now introduce a change in notation from Boolean binary values in {0, 1} to {1,−1} which
turns out to be more convenient. The transformation for a ∈ {0, 1} is:

a→ (−1)a

which maps 0 to 1, 1 to −1. The advantage with this change is that the xor (or summation mod 2)
operation becomes multiplication.

a+ b→ (−1)a+b = (−1)a(−1)b

We now consider functions f : {−1, 1}n → {−1, 1} and have a new form for the linear
function associated with a subset S ⊂ {1, 2, . . . , n}:

χS(x) =
∏
i∈S

xi (2)

and a new linearity test that checks

f(x · y) = f(x) · f(y)

for randomly chosen x, y ∈ {1,−1}n, where x · y denotes coordinatewise multiplication, i.e.,
(x · y)i = xiyi.

2

The expression f(x)f(y)f(xy) equals 1 if the test accepts for that choice of x, y, and equals
−1 if the test rejects. The quantity (

1− f(x)f(y)f(xy)

2

)
is thus an indicator for whether the test accepts. It follows that the probability that the BLR test
rejects using this new notation can be expressed as:

Pr [BLR test rejects] = E
x,y∈{1,−1}n

[
1− f(x)f(y)f(xy)

2

]
(3)

In order to calculate the value of this expectation, we will need some background in discrete
Fourier analysis.

4 Fourier Analysis on Discrete Binary Hypercube
Consider the vector space G consisting of all n-bit functions from {−1, 1}n to the real numbers:

G = {g | g : {−1, 1}n → R}

G has dimension 2n, and a natural basis for it are the indicator functions ea(x) = 1(x = a)
for a ∈ {1,−1}n. The coordinates of g ∈ G in this basis is simply the table of values g(a) for
a ∈ {1,−1}n.

We will now describe an alternate basis for G. We begin with an inner product on this space
defined as follows:

〈f, g〉 =
1

2n

∑
x∈{−1,1}n

f(x)g(x) (4)

The linear functions χS(x) for various subsets S form an orthonormal basis with respect to the
above inner product. Since |χS(x)| = 1 for every S, x, clearly 〈χS, χS〉 = 1 for all S ⊆
{1, 2, . . . , n}. The following shows that different linear functions are orthogonal w.r.t the inner
product (4).

Lemma 4.1.
S 6= T → 〈χS, χT 〉 = 0

Proof:

〈χS, χT 〉 =
1

2n

∑
x∈{−1,1}n

χS(x)χT (x)

=
1

2n

∑
x∈{−1,1}n

(∏
i∈S

xi

)(∏
i∈T

xi

)

=
1

2n

∑
x∈{−1,1}n

(∏
i∈S4T

xi

)
= 0

3

S4T denotes the symmetric difference of S and T . This is not empty because we have specified
S 6= T . The last step follows because we can always pair any x with an x̃ such that xj = −x̃j for
a fixed j ∈ S4T . 2

Thus we have shown that the {χS} form an orthonormal basis for G. We can therefore any
function f in this basis as follows (in what follows we use [n] to denote the set {1, 2, . . . , n}):

f(x) =
∑
S⊆[n]

f̂(S)χS(x) ,

where the coefficients f̂(S) w.r.t this basis are called the Fourier coefficients of f , and are given by

f̂(S) = 〈f, χS〉 =
1

2n

∑
x∈{1,−1}n

f(x)χS(x) .

Fact 4.2 (Fourier Coefficients of a Linear Function).

f linear ⇐⇒
(
∃S ⊆ [n] : f̂(S) = 1

)
∧
(
∀T ⊆ [n], T 6= S : f̂(T) = 0

)
The following describes how the Fourier coefficients are useful in understanding of a function

to the various linear functions.

Lemma 4.3. For every S ⊆ [n],

f̂(S) = 1− 2dist (f, χS) = 1− 2 Pr
x∈{1,−1}n

[
f(x) 6= χS(x)

]
. (5)

Proof:

2nf̂(S) =
∑
x

f(x)χS(x)

=
∑

x:f(x)=χS(x)

1 +
∑

x:f(x) 6=χS(x)

(−1)

= 2n − 2|{x | f(x) 6= χS(x)}|

= 2n(1− 2 Pr
x

[
f(x) 6= χS(x)

]
)

It follows that f̂(S) = 1− 2dist (f, χS) as claimed. 2

In particular, the above implies that any two distinct linear functions differ in exactly 1/2 of
the points. This implies that in the Hadamard code which we define below the encodings of two
distinct messages differ in exactly a fraction 1/2 of locations.

Definition 4.4 (Hadamard code). The Hadamard encoding of a string a ∈ {0, 1}n, denoted
Had(a) ∈ {0, 1}2n

, is defined as follows. Its locations are indexed by strings x ∈ {0, 1}n, and
Had(a)|x = a · x.

4

Parseval’s identity
We now state a simple identity that the Fourier coefficients of a Boolean function must obey.

Lemma 4.5. For any f : {−1, 1}n → {−1, 1},∑
S⊆[n]

f̂(S)2 = 1 .

Proof:
〈f, f〉 =

1

2n

∑
x∈{−1,1}n

f(x)f(x) = 1 .

On the other hand

〈f, f〉 = 〈
∑
S⊆[n]

f̂(S)χS,
∑
T⊆[n]

f̂(T)χT 〉

=
∑
S⊆[n]

f̂(S)2〈χS, χS〉 (since 〈χS, χT 〉 = 0 for S 6= T)

=
∑
S⊆[n]

f̂(S)2 . 2

5 Proof of BLR Soundness
We now set out to prove Theorem 2.4. By Equation (3) we need to analyze the expectation:

E
x,y

[f(x)f(y)f(xy)]

= E
x,y

[(∑
S

f̂(S)χS(x)

)(∑
T

f̂(T)χT (x)

)(∑
U

f̂(U)χU(xy)

)]

= E
x,y

[∑
S,T,U

(
f̂(S)f̂(T)f̂(U)χS(x)χT (y)χU(xy)

)]
=

∑
S,T,U

f̂(S)f̂(T)f̂(U) E
x,y

[χS(x)χT (y)χU(xy)]

We claim that the expectation in the last line is 0 unless S = T = U . Indeed this expectation

5

equals

E
x,y

[(∏
i∈S

xi

)(∏
j∈T

yj

)(∏
k∈U

xk

)(∏
l∈U

yl

)]

= E
x,y

[(∏
i∈S4U

xi

)(∏
j∈T4U

yj

)]

= E
x

[∏
i∈S4U

xi

]
E
y

[∏
j∈T4U

yj

]

If S 6= U or T 6= U , then one of the symmetric differences is non-empty, and the expectation is 0,
as claimed.

Hence we have the following expression for the desired expectation:

E
x,y

[f(x)f(y)f(xy)] =
∑
S⊆[n]

f̂(S)3

≤ max
S

f̂(S)
∑
S

f̂(S)2

= max
S

f̂(S) (using Parseval’s identity) .

= 1− 2 min
S

dist (f, χS)

where the last step used Lemma 4.3. Together with (3) we have the following conclusion:

Pr [BLR test rejects] ≥ min
S

dist (f, χS)

This is precisely the claim of Theorem 2.4.

6 Self-Correction
Another tool which will be useful in constructing an assignment tester is a self-correction proce-
dure for the Hadamard code. Assume we have f : {0, 1}n → {0, 1}, a function or table of values,
that is δ-close to some linear function L. (We now move back to the {0, 1} notation; the {1,−1}
notation was used only for analysing the linearity test.)

Remark 6.1. If δ < 1
4

then such a δ-close L is uniquely determined.

Using f we would like to compute L(x) for any desired xwith high accuracy. (Note that simply
probing f at x doesn’t suffice since x could be one of the points where f and L differ.) Such a
procedure is called a self-correction procedure since a small amount of errors in the table f can be
corrected using probes only to f to provide access to a noise-free version of the linear function L.

Consider the following procedure:

Procedure Self-Corr(f, x):

6

1. Select y ∈ {0, 1}n uniformly at random.

2. Return f(x+ y)− f(y)

Lemma 6.2. If f is δ-close to a linear function L for some δ < 1/4, then for any x ∈ {0, 1}n the
above procedure Self-Corr(f, x) computes L(x) with probability at least 1− 2δ.

Proof: Since y and x+ y are both uniformly distributed in {0, 1}n, we have

Pr
y

[f(x+ y) 6= L(x+ y)] ≤ δ

Pr
y

[f(y) 6= L(y)] ≤ δ

Thus with probability at least 1 − 2δ, f(x + y) − f(y) = L(x + y) − L(y) = L(x), and so
Self-Corr(f, x) outputs L(x) correctly. 2

7 Constant Query Assignment Tester: Arithmetizing Circuit-
SAT

We now have a way to test for linearity and self-correction procedure to gain access to the Hadamard
encoding of a string using oracle access to a close-by function. How can we use this for assignment
testing? Let’s review the assignment testing problem.

Let Φ be a circuit on Boolean variables X and Ψ be a collection of constraints on on X ∪ Y
where Y are auxiliary Boolean variables produced by an assignment tester. We want the following
two properties:

1. if Φ(a) = 1, then ∃b such that ∀ψ ∈ Ψ, a ∪ b satisfies ψ

2. If a is δ-far from every a′ for which Φa′ = 1 then ∀bPrψ∈Ψ [(a ∪ b) violates ψ] = Ω(δ).

We can reduce any given circuit over Boolean variables (CIRCUIT-SAT) to a set of quadratic
equations over F2 (QFSAT). Then the existence of solutions for the system of equations implies
that the original circuit is satisfiable, and vice versa. How do we do this? We have one F2-valued
variable wi for each gate of the circuit Φ (including each input gate that each has an input variable
connected to it). We only need to provide quadratic equations that enforce proper operation of
AND and NOT gates.

• (wk = wi ∧ wj) → (wk − wiwj = 0)

• (wl = ¬wi) → (wi + wl − 1 = 0)

If wN denotes the variable for the output gate, we also add the equation wN − 1 = 0 to enforce
that the circuit outputs 1.

It is easy to check that all these constraints can be satisfied iff Φ is satisfiable.
In the next lecture, we’ll describe how to use linearity testing and self-correction codes to give

an assignment tester for input an arbitrary circuit Φ.

7

CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 9: Proof of PCP Theorem - The Final Piece
10/31/2005

Lecturer: Venkat Guruswami Scribe: Raghavendra Prasad

1 Overview
The proof of PCP presented so far is complete except for one last piece - The Assignment Tester
(AT). In today’s lecture, we use the techniques developed in the previous class to design an assign-
ment tester. With this, we complete the proof of the PCP theorem. We will also take a step back to
reflect upon the overall structure of the proof, and the tools it used.

As this lecture relies heavily on the techniques of previous class, we recall a few definitions
and results here.

Definition 1.1. An q-query assignment tester AT (γ > 0,Σ0) is a reduction algorithm P whose
input is a Boolean Circuit Φ over boolean variables X and output is a system of constraints Ψ
over X and a set Y of auxilary variables, such that

• Variables in Y take values in Σ0.

• Each ψ ∈ Ψ depends on at most q variables in X ∪ Y .

• For any assignment a to variables X we have

– COMPLETENESS: If Φ(a) = 1 then there exists an assignment b to variables in Y , such
that a ∪ b satisfy every constraint ψ ∈ Ψ.

– SOUNDNESS: If assignment a : X → {0, 1} is δ-far from every satisfying assignment
to Φ, then for any ∀b : Y → Σ0 at least γδ0 fraction ψ ∈ Psi are violated by a ∪ b.

Remark: The soundness condition is implied by the following statement: ∃δ0 > 0 and γ0 > 0
such that for δ ≤ δ0, if assignment a : X → {0, 1} is δ-far from every satisfying assignment to Φ,
then for any ∀b : Y → Σ0 at least γ0δ0 fraction ψ ∈ Psi are violated by a ∪ b. Indeed this implies
the above definition with γ = γ0δ0. We will use this form to establish the soundness.

1.1 Arithmetizing a Circuit
Any circuit over boolean variables can be reduced to a system of quadratic equations over F2,
such that there exists a satisfying assignment to the circuit, iff there is a solution to the system of
quadratic equations. This reduction from circuits to polynomial equations known as Arithmetiza-
tion of Circuits, is a recurring technique in complexity theory.

1

Let us assume we have a boolean circuitC with input variablesX and gates Y . Arithmetization
of C in to quadratic constraints can be done as follows

• Introduce a variable zi ∈ A for each input variable X and for each gate Y . (i.e., |A| =
|X|+ |Y |).

• For each gate yi ∈ Y introduce a quadratic constraint Pi, to model the relation between input
and output.

– An AND gate with input zi, zj and output zk : zi · zj − ak = 0.

– An OR gate with input zi, zj and output zk : zi + zj + zi · zj − zk = 0.

– A NOT gate with input zi and output zj : zj + zi − 1 = 0.

• Introduce a constraint to force the output of the circuit to 1 : zk − 1 = 0 where zk is the
variable corresponding to the output gate of the circuit.

1.2 Assignment Tester
Given a boolean circuit Φ over variables X with gates Y , we first arithmetize Φ to obtain a system
of quadratic equations P = {P1 . . . Pm} over variables A = {z1 . . . zN} where N = |X| +
|Y |. Therefore the task of an assignment tester is reduced to checking a solution for a system of
quadratic equations, using very few queries.

2 Testing a Quadratic System with Few Queries
The naive method is to check if an assignment a : A→ {0, 1} is a solution to a system of quadratic
equations P = {P1, P2 . . . Pm}, is to substitute aj = a(zj) for various j in each Pi and check if
Pi = 0. But observe that in order to do this, we need to know the entire assignment a, which
would require a large number (not constant) of queries. Therefore, the first objective is to reduce
the number of queries in this naive test.

Instead of checking that Pi(a) = 0 for each i, let us take a random linear combination of the
numbers Pi(a) and check if it is zero.

m∑
i=1

riPi(a) = 0

where ri ∈ F2 = {0, 1} are chosen at random independent of each other.
Observe that the addition in the above linear combination is over F2. So it is possible that

the linear combination sums up to zero, although each of the terms are non-zero. But we show
that if the Pi are indeed non-zero, then with probability 1/2, their linear combination is non-zero.
Therefore this test alone has a completeness of 1 and soundness 1

2
.

2

Lemma 2.1. If not all Pi(a), i = 1 . . .m are zero, then

Pr[
m∑

i=1

riPi(a) 6= 0] =
1

2

Proof: It is known that there exists an i such that Pi(a) = 1. Without loss of generality, we assume
Pm(a) = 1. Then

m∑
i=1

riPi(a) =
m−1∑
i=1

riPi(a) + rmPm(a) (1)

Observe that irrespective of the value of
∑m−1

i=1 riPi(a), the entire sum takes values {0, 1} for the
two choices of rm. Therefore, in one of the two choices of rm the sum

∑m
i=1 riPi(a) is not zero.

Hence the result follows.
So instead of testing Pi(a) = 0 for every i, we test that P~r(a) = 0 for a random vector ~r.

However we still have a problem of computing P~r(a) without looking at the entire assignment a.
For a vector ~r = {r1, . . . , rm} let us express P~r(a) as follows:

P~r(a) =
m∑

i=1

riPi(a) = s0 +
N∑

i=1

siai +
∑

1≤i,j≤N

tijaiaj (2)

for some s0, s1, . . . , sm ∈ F2 and tij ∈ F2 for 1 ≤ i, j ≤ m. Observe that we only require to
check that P~r(a) = 0. Therefore, instead of reading the entire assignment a and computing P~r(a),
we let the prover perform most of the computation, and read only the final results. Specifically, we
will ask the prover for each of the sums

∑
i siai and

∑
ij tijaiaj . Towards this, let us define the

following notation.

Definition 2.2. Given an assignment a = [a1, . . . , aN], define

L(s) =
N∑

i=1

aisi for a vector s ∈ {0, 1}N ,

Q(t) =
N∑

i=1

aiajtij for a N ×N matrix t over {0, 1}

(3)

Note that for every assignment a, L and Q are linear functions over F2.

The table of values L is just the Hadamard codeword for the assignment a. Recall the definition
of the Hadamard code from last lecture.

Definition 2.3. For a vector x = {x1, . . . , xr} over a field F, the Hadamard encoding of x, denoted
Had(x) is given by: Had(x)(s) =

∑r
i=1 sixi for every s ∈ Fr.

3

The Hadamard code is the longest possible linear code which does not have any repeated sym-
bols, as it contains all possible linear combinations of the symbols of the message x.

The table of values Q defined above is the Quadratic Function encoding of the assignment a.
We define this encoding formally below.

Definition 2.4. For a vector x = {x1, . . . , xr} over a field F, the quadratic function encoding of
x, denoted QF(x), is given by QF(x)(t) =

∑
1≤i,j≤r tijxixj for all t ∈ Fr×r.

In other words, quadratic function code for a vector x is the Hadamard code for the vector
x⊗ x. So every Quadratic function codeword is a Hadamard codeword (or in other words a linear
function) but not vice-versa.

Using this new notation, we re-write equation 2 as

P~r(a) = s0 + L(s) +Q(t)

We can directly obtain the values L(s) and Q(t) from the prover, and check if P~r(a) = 0.
Observe that the values of s and t depend on the random choice ~r. Let us assume that the proof
contains tables L and Q, that list the values of L(s) and Q(t) for all values of s and t. Hence, we
can get the value for L(s) and Q(t) directly from the proof to check if P~r(a) = 0. By this we have
reduced the number of queries to just two (L(s), Q(t)). However, there is a catch — there is no
guarantee that the tables L and Q are correct.

By the correctness of L and Q, we mean the following

• C1: L is a linear function, say L is the Hadamard encoding of some c ∈ FN
2 .

• C2: Q is a linear function on FN2

2 , say it is the Hadamard encoding of someC = (Cij)1≤i,j≤N .

• C3: Q and L are referring the same assignment c, i.e., the coefficient Cij in Q is cicj . Note
that this condition also implies that Q is a Quadratic Function codeword and not just a
Hadamard codeword.

• C4: The assignment c that both Q and L are referring to is indeed the assignment a.

From the previous lecture, we know how to test conditions C1 and C2 using only a few queries.
Assuming that the tables have passed the linearity tests, the two tables are close to linear functions
with constant probability. Hence we can use the Self-Correction Lemma of the previous lecture, to
obtain the correct value of the linear function at s instead of reading L(s) directly. Let us denote
by SelfCorrect(L, s) output of the Self-Correction routine, i.e the value of the linear function at s.
If L and Q, pass the linearity test, then we have at our disposal the two linear functions (Hadamard
codewords) SelfCorrect(L, s) and SelfCorrect(Q, t).

Testing Condition C3

Given any two vectors s, ś ∈ FN , if L = Had(c) and Q = QF(c), then observe that

4

L(s)L(ś) = (
∑

i

aisi)(
∑

j

aj śj)

=
∑

i

∑
j

(siśj)aiaj

= Q(s⊗ ś) (4)

Therefore, in order to test that L and Q are referring to the same assignment, we can check if
L(s)L(ś) = Q(s⊗ ś) for randomly chosen s, ś.

Assuming Q and L satisfy the test for condition C3, with constant probability it must be true
that Q and L are referring to the same assignment . Therefore, to test C4, it is enough to test if L is
the linear function corresponding to a. i.e the coefficients of si in L(s) is ai. Observe that for ei-
the ith unit vector, we get L(ei) = ai. So inorder to test if L is referring to assignment a, we just
check if L(ei) = ai for a randomly chosen i (using SelfCorrect(L, ei) to computer L(ei) reliably).

Thus we have few query tests for all the conditions Ci, i = 1 . . . 4, and also a few query test for
P~r(a) = 0. We will put this all together in the next section to get an Assignment tester.

5

3 Assignment Tester

Input: A boolean circuit Φ over variables X and gates Y such that |X|+ |Y | = N .

Initialization: Arithmetize the circuit to obtain a system of quadratic constraints P =
{P1, . . . , Pm} over variables A = {z1, . . . , zN}. Let variables z1 . . . z|X| correspond to
variables X and variables z|X|+1 . . . zN correspond to gates Y .

The Proof:

• An assignment a = (a1, a2, . . . , aN) ∈ {0, 1}N for the variables A (supposedly a
satisfying assignment for P).

• A table L : FN
2 → F2, supposedly equal to Had(a), i.e., satisfying L(s) =

∑N
i=1 aisi

• A table Q : FN2

2 → F2, supposedly equal to QF(a), i.e., satisfying Q(t) =∑N
i=1 aiajtij .

The Test:
Step 1

• Run BLR linearity test on L

• Run BLR linearity test on Q

Step 2 Pick random s, ś ∈ FN
2 and check if the following holds

SelfCorrect(L, s)SelfCorrect(L, ś) = SelfCorrect(Q, s⊗ ś)

Step 3 Pick a random vector ~r ∈ Fm
2 . Compute the coefficients si and tij such that

P~r(a) =
m∑

i=1

riPi(a) = s0 +
N∑

i=1

siai +
∑

1≤i,j≤N

tijaiaj

Check if

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) = 0

Step 4 Pick a random i ∈ {1, . . . , |X|}. Let ei denote the ith unit vector of dimension N .
Check if

SelfCorrect(L, ei) = ai

6

4 Proof of Soundness
In order to prove the soundness of the assignment tester, we prove the soundness of each of the
steps in it by a sequence of lemmas.

Lemma 4.1. If L or Q is δ1-far from a linear function then Step 1 will reject with probability
greater than or equal to δ1.

Proof: This lemma is nothing but the soundness result for BLR test, which was shown in the
previous class.

Lemma 4.2. Given a non-zero matrix M , for random choice of vectors s and ś, sTMs = 0 with
probability at most 3

4

Proof: Let (M)ij be a non-zero entry in M . Let ei and ej denote the ith and jth unit vectors.
Observe that

sTMś+ (sT + ei)Mś+ sTM(ś+ ej) + (sT + ei)M(ś+ ej) = eiMej

= (M)ij

Since, (M)ij is non-zero, it follows that at least one of the numbers sTMś, (sT + ei)Mś, sTM(ś+
ej), (s

T + ei)M(ś + ej) is non-zero. This implies that with probability at least 1
4

over random
choice of s and ś, sTMś is not zero, which implies the result.

Lemma 4.3. Completeness: If L = Had(c), and Q = QF(c) for some vector c ∈ FN
2 , then Step 2

always accepts.
Soundness: If L is δ1-close to Had(c) and Q is δ1-close to Had(C) such that Cij 6= cicj for some
i, j, then Step 2 rejects with probability at least 1

4
− 6δ1

Proof: In Step 2 we are checking for randomly chosen s, ś, that L(s)L(ś) = Q(s ⊗ ś). This
identity holds whenever L and Q are Hadamard and quadratic function encodings of the same
vector c. This proves the completeness part of the lemma.

For the soundness proof, define two matrices M1 and M2 as follows

(M1)ij = cicj M1 = ccT

(M2)ij = Cij M2 = C

From the property of self correction discussed in the previous lecture, Observe that if L is
δ1-close to Had(c), then with probability greater than 1− 2δ1,

SelfCorrect(L, s) = sT c

7

That is with the value of SelfCorrect(L, s) can be different from the linear function’s value with
probability at most 2δ1. Likewise, except with probability at most 2δ1, we have SelfCorrect(L, ś) =
śT c. Similarly with probability at least 1− 2δ1, we know that

SelfCorrect(Q, s⊗ ś) = sTCś

Therefore with probability at least 1− 6δ1 the equality being tested in Step 2 is

sTM1ś = sTM2ś

sT (M1 −M2)ś = 0

sTMś = 0

where M = M1 −M2 is a non-zero matrix. From Lemma 4.2 we conclude that sTMś is nonzero
with probability 1

4
. Therefore, with probability at least (1 − 6δ1) − 3

4
, the test made is sTMś = 0

and the test fails. So Step 2 rejects with probability at least 1
4
− 6δ2.

Lemma 4.4. If L is δ1-close to Had(c) and Q is δ1-close to QF(c), and for some j, Pj(c) 6= 0 then
Step 3 rejects with probability at least 1

2
− 4δ.

Proof: By Self-Correction we know that with probability at most 2δ1, the value SelfCorrect(L, s) 6=∑N
i=1 cisi. Similarly with probability at most 2δ1, SelfCorrect(Q, T) 6=

∑N
i=1 cicjtij . So with

probability at least 1− 4δ1 the test

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) = 0

is equivalent to

P~r(a) = s0 +
N∑

i=1

sici +
∑

1≤i,j≤N

tijcicj = 0

From Lemma 2.1 we know that for random ~r, P~r(c) = 0 with probability 1/2 (since there exists j
such that Pj(c) 6= 0). Therefore, with probability at least 1− 6δ1 − 1

2
,

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) 6= 0

and Step 3 rejects.

Theorem 4.5. Perform each of the steps 1,2,3,4 with probability 1
4

each. Let aX denote the assign-
ment a restricted to variables X of the original boolean circuit Φ. Then

• If L = Had(a) and Q = QF(a) and Pj(a) = 0 for all 1 ≤ j ≤ m then the test accepts with
probability 1.

• Let δ ≤ 1/28. If the assignment aX is δ-far from every satisfying assignment to boolean
circuit Φ, then the test rejects with probability at least δ

8
irrespective of the contents of tables

L and Q.

8

Proof: The completeness part of the proof is trivial, since each of the steps in the assignment tester,
has completeness 1.

Suppose L or Q is δ-far from the nearest Hadamard codeword, then from Lemma 4.1 with
δ1 = δ, Step 1 rejects with probability at least δ. Since with probability 1

4
Step 1 is performed,

the test rejects with probability at least δ
4
. Without loss of generality we assume that L and Q are

δ-close to their nearest Hadamard codewords.
Further if L and Q do not ’refer’ to the same assignment, by applying Lemma 4.3 with δ1 = δ,

Step 2 rejects with probability at least 1
4
− 6δ. Observe that for δ < 1

28
, 1

4
− 6δ ≥ δ. As Step 2 is

chosen with probability 1
4
, the test rejects with probability at least δ

4
. So without loss of generality,

we can assume that L and Q also refer to the same assignment c.
Suppose c is not a satisfying assignment for P , then by applying Lemma 4.4 with δ1 = δ,

we know that Step 3 rejects with probability at least 1
2
− 4δ. Since δ < 1

28
, Step 3 rejects with

probability at least 1
2
− 4δ > δ. As Step 3 is chosen with probability at least 1

4
, the test rejects with

probability at least δ
4
. So without loss of generality we can assume that c is a satisfying assignment

for P .
We know that aX is δ-far from every satisfying assignment to Φ, so in particular it is δ-far from

cX (since c being a satisfying assignment for P implies that cX satisfies the circuit Φ). By the
property of Self Correction, and that L is δ-close to Had(c), we know that SelfCorrect(L, ei) = ci
with probability at least 1 − 2δ. Therefore with probability at least 1 − 2δ, Step 4 is testing if
ai = ci. Since a is at least δ-far from c, ai 6= ci with probability δ over the random choice of i in
{1, . . . , |X|}. Therefore Step 4 rejects with probability at least δ(1− 2δ) ≥ δ

2
. As Step 4 is chosen

with probability at least 1
4
, the test rejects with probability at least δ

8
.

4.1 Remarks
• Observe that by end of Step 3 in the assignment tester, the verfier is convinced that there

is some satisfying assignment to P and L and Q are referring to it. Therefore, steps 1, 2, 3
already form a PCP system albeit with exponential size proofs. Step 4 just tests if the given
assignment a is close to the assignment, that L and Q are referring to. This is the extension
to get the Assignment Tester property.

• We have presented the assignment tester in a Prover-Verifier description. This description
can be readily converted to suit the original definition of assignment tester in terms of con-
straints. The auxilary variables of the assignment tester, are

– The variables ai corresponding to the gates in the original boolean circuit Φ.

– The entries in tables L and Q.

Thus there are m + 2N + 2N2 auxilary variables in total, all over the alphabet F2. All the
constraints have at most six variables each, and are linear or quadratic equations over F2.

9

5 PCP Proof - Another look
With the construction of a Assignment Tester, we have completed the proof of the PCP theorem.
Considering the importance of the theorem, and the variety of tools used in its proof, it is worth
taking another look at the proof.

PCP theorem as it is stated normally, implies that for every language inNP there is a polynomial-
size proof, that can be checked by random verifier using very few queries. However, as we showed
in the first class, the PCP theorem can also be stated as a NP-hardness result. Towards this, we ob-
served that PCP theorem is equivalent to the fact that GAP −CG1,s is NP -hard for some constant
s < 1.

In order to show that GAP − CG1,s is NP -hard, we need a polynomial time reduction from
a known NP -complete problem to it. But we also know that Constraint Graph satisfaction is
NP -hard. Therefore, a possible proof of the PCP theorem would be to reduce a Constraint graph
satisfaction problem to GAP − CG1,s. Observe that Constraint Graph satisfaction problem is a
special case ofGAP−CG1,s for s = 1− 1

|E| where |E| is the number of constraints in the constraint
graph. Let us define the “gap” to be the unsatisfiability value of a constraint graph (i.e., 1 minus
the fraction of constraints satisfied by the best assignment). So the PCP theorem guarantees a
reduction from instances with gap 1

|E| to instances with gap 1− s = Ω(1). Therefore PCP theorem
can be viewed as a Gap Producing or Amplifying Reduction.

The proof that we presented, creates the gap slowly and persistently, a little increase each time,
keeping the other parameters under control. In the original proof of the PCP theorem, a large gap
was created in one-single step and the other parameters had to be remedied later.

The Gap producing reduction consisted of several iterations. In each iteration, there were
four steps that modified the parameters of the constraint graph appropriately. At the end of each
iteration, the gap of the graph doubled, with a accompanying constant factor increase in its size.
Therefore, by the end of O(log n) iterations, the gap increases to a constant, while the size is still
polynomial in the original size of the graph.

The following table , sums up the central ideas and tools used in each of the four steps.

10

Step Main Ideas Effects Proof Techniques
Degree Re-
duce

Split every vertex in to many
vertices,and introduce an Ex-
pander cloud with equality
constraints among the split
vertices.

Size ↑ a O(d) factor, Gap de-
creases by a constant factor,
Alphabet remains same

Basic expansion prop-
erty of expanders

Expanderize Superimpose a constant de-
gree expander with trivial
constraints, on to the con-
straint graph G

Size ↑ a factor of 2 to 3, Gap
decreases by a constant fac-
tor, Alphabet remains same

Existence of constant
degree expanders and
Property that Expander
+ Graph gives an ex-
pander.

Gap-
Amplification

Each vertex’s value is its
opinion,on the values of ver-
tices at a distance < t,Add
edges corresponding to con-
sistency on random walks

Size ↑ by a large con-
stant factor ,Gap increases by
O(t), Alphabet size becomes
|Σ|O(dt)

Properties of random
walks on the graph

Alphabet-
Reduce

Encode the assignment with
error correcting codes, Build
a circuit that checks if assign-
ment satisfies and is a valid
codeword, Use an assignment
tester for the circuit

Size ↑ a constant factor, Gap
decreases by a constant fac-
tor,Alphabet size reduced to
26

Hadamard codes, Lin-
earity Testing, Fourier
Analysis

Table 1: Proof of PCP

11

